5 research outputs found

    Do student differences in reading enjoyment relate to achievement when using the random-intercept cross-lagged panel model across primary and secondary school?

    No full text
    Recent longitudinal research using the random-intercept cross-lagged panel model (RI-CLPM), which disentangles the within and between variances, has afforded greater insights than previously possible. Moreover, the impact of reading enjoyment and reading for fun on subsequent school achievement, and vice versa, has only recently been scrutinized through this lens. This study's longitudinal data (grades 3, 5, 7, and 9) comprised 2,716 Australian students aged 8 to 16 years, with school reading achievement measured by the National Assessment Program: Literacy and Numeracy (NAPLAN). The RI-CLPMs' within-person effects were not trivial, accounting for approximately two-thirds and one-third of the variance in enjoyment/fun and achievement, respectively, with between-person effects accounting for the balance. Here, we highlight a reversing direction of reading achievement's cross-lagged effect on subsequent reading enjoyment but note that the evidence for this over a reciprocal directionality was marginal. In mid-primary school, achievement at grade 3 predicted enjoyment at grade 5 more than the converse (i.e. enjoyment at grade 3 to achievement at grade 5). By secondary school, however, the directionality had flipped: enjoyment at grade 7 predicted achievement at grade 9 more so than the reverse. We termed this pattern the skill-leisure-skill directionality (S-L-S), as it concurred with the only two former studies that modelled equivalent instruments with the RI-CLPM. This model's cross-lagged estimates represent deviations relative to a student's average (i.e., within-person effect). In other words, students who enjoyed reading more (or less) in grade 7 achieved reading scores that were higher (or lower) than their average in grade 9. The implications for reading pedagogy are further discussed

    The Next Generation Global Gravitational Wave Observatory: The Science Book

    Get PDF
    The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it possible to address unsolved problems in numerous areas of physics and astronomy, from Cosmology to Beyond the Standard Model of particle physics, and how they could provide insights into workings of strongly gravitating systems, astrophysics of compact objects and the nature of dense matter. It is inevitable that observatories of such depth and finesse will make new discoveries inaccessible to other windows of observation. In addition to laying out the rich science potential of the next generation of detectors, this report provides specific science targets in five different areas in physics and astronomy and the sensitivity requirements to accomplish those science goals. This report is the second in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book (this report), iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    The Next Generation Global Gravitational Wave Observatory: The Science Book

    No full text
    The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it possible to address unsolved problems in numerous areas of physics and astronomy, from Cosmology to Beyond the Standard Model of particle physics, and how they could provide insights into workings of strongly gravitating systems, astrophysics of compact objects and the nature of dense matter. It is inevitable that observatories of such depth and finesse will make new discoveries inaccessible to other windows of observation. In addition to laying out the rich science potential of the next generation of detectors, this report provides specific science targets in five different areas in physics and astronomy and the sensitivity requirements to accomplish those science goals. This report is the second in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book (this report), iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)
    corecore