40 research outputs found

    Children’s oxygen administration strategies trial (COAST): A randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia

    Get PDF
    Background: In Africa, the clinical syndrome of pneumonia remains the leading cause of morbidity and mortality in children in the post-neonatal period. This represents a significant burden on in-patient services. The targeted use of oxygen and simple, non-invasive methods of respiratory support may be a highly cost-effective means of improving outcome, but the optimal oxygen saturation threshold that results in benefit and the best strategy for delivery are yet to be tested in adequately powered randomised controlled trials. There is, however, an accumulating literature about the harms of oxygen therapy across a range of acute and emergency situations that have stimulated a number of trials investigating permissive hypoxia.Methods: In 4200 African children, aged 2 months to 12 years, presenting to 5 hospitals in East Africa with respiratory distress and hypoxia (oxygen saturation \u3c 92%), the COAST trial will simultaneously evaluate two related interventions (targeted use of oxygen with respect to the optimal oxygen saturation threshold for treatment and mode of delivery) to reduce shorter-term mortality at 48-hours (primary endpoint), and longer-term morbidity and mortality to 28 days in a fractional factorial design, that compares: Liberal oxygenation (recommended care) compared with a strategy that permits hypoxia to SpO2 \u3e or = 80% (permissive hypoxia); and High flow using AIrVO2TM compared with low flow delivery (routine care)

    Immediate Versus Triggered Transfusion for Children with Uncomplicated Severe Anaemia

    Get PDF
    Background: The World Health Organization recommends a haemoglobin transfusion threshold of 0.2) nor evidence of differences between groups in re-admissions (p=0.36), serious adverse events (p=0.36) nor in haemoglobin recovery at 180-days (p=0.08). Length-of-stay was mean 0.9 days longer in the triggered group. Conclusions: There was no evidence of differences in clinical outcomes over 6 months with triggered vs immediate transfusion. Triggered transfusion reduced blood-volume requirements by 60% but increased length-of-stay by 20% and required repeated haemoglobin monitoring and surveillance

    Children's Oxygen Administration Strategies Trial (COAST):  A randomised controlled trial of high flow versus oxygen versus control in African children with severe pneumonia.

    Get PDF
    Background: In Africa, the clinical syndrome of pneumonia remains the leading cause of morbidity and mortality in children in the post-neonatal period. This represents a significant burden on in-patient services. The targeted use of oxygen and simple, non-invasive methods of respiratory support may be a highly cost-effective means of improving outcome, but the optimal oxygen saturation threshold that results in benefit and the best strategy for delivery are yet to be tested in adequately powered randomised controlled trials. There is, however, an accumulating literature about the harms of oxygen therapy across a range of acute and emergency situations that have stimulated a number of trials investigating permissive hypoxia. Methods: In 4200 African children, aged 2 months to 12 years, presenting to 5 hospitals in East Africa with respiratory distress and hypoxia (oxygen saturation or = 80% (permissive hypoxia); andHigh flow using AIrVO 2TM compared with low flow delivery (routine care). Discussion: The overarching objective is to address the key research gaps in the therapeutic use of oxygen in resource-limited setting in order to provide a better evidence base for future management guidelines. The trial has been designed to address the poor outcomes of children in sub-Saharan Africa, which are associated with high rates of in-hospital mortality, 9-10% (for those with oxygen saturations of 80-92%) and 26-30% case fatality for those with oxygen saturations <80%. Clinical trial registration: ISRCTN15622505 Trial status: Recruiting

    Transfusion Volume for Children with Severe and LifeThreatening Anaemia

    Get PDF
    Background: Severe anaemia (haemoglobin37.5C) at screening. 30mls/kg reduced mortality in the 1943(61%) children without fever (28-day HR=0.43 (0.27,0.69) p=0.001), but increased mortality in the 1253(39%) children with fever (HR=1.91 (1.04,3.49) p=0.04). There was no evidence of differences between groups in re-admissions (p=0.38), serious adverse events (p=0.58) nor in haemoglobin recovery at 180-days (p=0.10). Conclusions: Mortality could be reduced by transfusing 30mls/kg whole blood equivalent in children presenting with severe anaemia without fever

    Phase II trial of standard versus increased transfusion volume in Ugandan children with acute severe anemia.

    Get PDF
    BACKGROUND: Severe anemia (SA, hemoglobin 6 g/dl: primary outcome) and 28-day survival. RESULTS: Median admission hemoglobin was 4.2 g/dl (IQR 3.1 to 4.9). Initial volume received followed the randomization strategy in 155 (97%) patients. By 24-hours, 70 (90%) children in the Tx30 arm had corrected SA compared to 61 (74%) in the Tx20 arm; cause-specific hazard ratio = 1.54 (95% confidence interval 1.09 to 2.18, P = 0.01). From admission to day 28 there was a greater hemoglobin increase from enrollment in Tx30 (global P <0.0001). Serious adverse events included one non-fatal allergic reaction and one death in the Tx30 arm. There were six deaths in the Tx20 arm (P = 0.12); three deaths were adjudicated as possibly related to transfusion, but none secondary to volume overload. CONCLUSION: A higher initial transfusion volume prescribed at hospital admission was safe and resulted in an accelerated hematological recovery in Ugandan children with SA. Future testing in a large, pragmatic clinical trial to establish the effect on short and longer-term survival is warranted. TRIAL REGISTRATION: ClinicalTrials.Gov identifier: NCT01461590 registered 26 October 2011

    Predicting mortality in sick African children: the FEAST Paediatric Emergency Triage (PET) Score.

    Get PDF
    BACKGROUND: Mortality in paediatric emergency care units in Africa often occurs within the first 24 h of admission and remains high. Alongside effective triage systems, a practical clinical bedside risk score to identify those at greatest risk could contribute to reducing mortality. METHODS: Data collected during the Fluid As Expansive Supportive Therapy (FEAST) trial, a multi-centre trial involving 3,170 severely ill African children, were analysed to identify clinical and laboratory prognostic factors for mortality. Multivariable Cox regression was used to build a model in this derivation dataset based on clinical parameters that could be quickly and easily assessed at the bedside. A score developed from the model coefficients was externally validated in two admissions datasets from Kilifi District Hospital, Kenya, and compared to published risk scores using Area Under the Receiver Operating Curve (AUROC) and Hosmer-Lemeshow tests. The Net Reclassification Index (NRI) was used to identify additional laboratory prognostic factors. RESULTS: A risk score using 8 clinical variables (temperature, heart rate, capillary refill time, conscious level, severe pallor, respiratory distress, lung crepitations, and weak pulse volume) was developed. The score ranged from 0-10 and had an AUROC of 0.82 (95 % CI, 0.77-0.87) in the FEAST trial derivation set. In the independent validation datasets, the score had an AUROC of 0.77 (95 % CI, 0.72-0.82) amongst admissions to a paediatric high dependency ward and 0.86 (95 % CI, 0.82-0.89) amongst general paediatric admissions. This discriminative ability was similar to, or better than other risk scores in the validation datasets. NRI identified lactate, blood urea nitrogen, and pH to be important prognostic laboratory variables that could add information to the clinical score. CONCLUSIONS: Eight clinical prognostic factors that could be rapidly assessed by healthcare staff for triage were combined to create the FEAST Paediatric Emergency Triage (PET) score and externally validated. The score discriminated those at highest risk of fatal outcome at the point of hospital admission and compared well to other published risk scores. Further laboratory tests were also identified as prognostic factors which could be added if resources were available or as indices of severity for comparison between centres in future research studies

    Evaluation of the diagnostic accuracy and cost of different methods for the assessment of severe  anaemia in hospitalised children in Eastern Uganda [version 1; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Background: Severe anaemia in children requiring hospital admission is a major public health problem in malaria-endemic Africa. Affordable methods for the assessment of haemoglobin have not been validated against gold standard measures for identifying those with severe anaemia requiring a blood transfusion, despite this resource being in short supply. Methods: We conducted a prospective descriptive study of hospitalized children aged 2 months – 12 years at Mbale and Soroti Regional Referral Hospitals, assessed to have pallor at triage by a nurse and two clinicians. Haemoglobin levels were measured using the HemoCue® Hb 301 system (gold standard); the Haemoglobin Colour Scale; calorimetric and Sahli’s methods. We report clinical assessments of the degree of pallor, clinicians’ intention to transfuse, inter-observer agreement, limits of agreement using the Bland-Altman method, and the sensitivity and specificity of each method in comparison to HemoCue® Results: We recruited 322 children assessed by the admitting nurse as having severe (164; 51.0%), moderate (99; 30.7%) or mild (57; 17.7%) pallor. Agreement between the clinicians and the nurse were good: Clinician A Kappa=0.68 (0.60–0.76) and Clinician B Kappa=0.62 (0.53–0.71) respectively (P<0.0001 for both). The nurse, clinicians A and B indicated that of 94/116 (81.0%), 83/121 (68.6%) and 93/120 (77.5%) respectively required transfusion. HemoCue® readings indicated anaemia as mild (Hb10.0–11.9g/dl) in 8/292 (2.7%), moderate (Hb5.0–9.9g/dl) in 132/292 (45.2%) and severe (Hb<5.0g/dl) in 152/292 (52.1%). Comparing to HemoCue® the Sahli’s method performed best in estimation of severe anaemia, with sensitivity 84.0% and specificity 87.9% and a Kappa score of  0.70 (0.64–0.80). Conclusions: Clinical assessment of severe pallor results has a low specificity for the diagnosis of severe anaemia. To target blood transfusion Hb measurement by either Hemocue® or Sahli’s method for the cost of USD 4 or and USD 0.25 per test, respectively would be more cost-effective

    Evaluation of the diagnostic accuracy and cost of different methods for the assessment of severe  anaemia in hospitalised children in Eastern Uganda [version 2; peer review: 3 approved]

    Get PDF
    Background: Severe anaemia in children requiring hospital admission is a major public health problem in malaria-endemic Africa. Affordable methods for the assessment of haemoglobin have not been validated against gold standard measures for identifying those with severe anaemia requiring a blood transfusion, despite this resource being in short supply. Methods: We conducted a prospective descriptive study of hospitalized children aged 2 months – 12 years at Mbale and Soroti Regional Referral Hospitals, assessed to have pallor at triage by a nurse and two clinicians. Haemoglobin levels were measured using the HemoCue ® Hb 301 system (gold standard); the Haemoglobin Colour Scale; Colorimetric and Sahli’s methods. We report clinical assessments of the degree of pallor, clinicians’ intention to transfuse, inter-observer agreement, limits of agreement using the Bland-Altman method, and the sensitivity and specificity of each method in comparison to HemoCue ® Results: We recruited 322 children, clinically-assessed by the admitting nurse (n=314) as having severe (166; 51.6%), moderate (97; 30.1%) or mild (51; 15.8%) pallor. Agreement between the clinicians and the nurse were good: Clinician A Kappa=0.68 (0.60–0.76) and Clinician B Kappa=0.62 (0.53–0.71) respectively ( P<0.0001 for both). The nurse, clinicians A and B indicated that of 94/116 (81.0%), 83/121 (68.6%) and 93/120 (77.5%) respectively required transfusion. HemoCue ® readings indicated anaemia as mild (Hb10.0–11.9g/dl) in 8/292 (2.7%), moderate (Hb5.0–9.9g/dl) in 132/292 (45.2%) and severe (Hb<5.0g/dl) in 152/292 (52.1%). Comparing to HemoCue® the Sahli’s method performed best in estimation of severe anaemia, with sensitivity 84.0% and specificity 87.9% and a Kappa score of  0.70 (0.64–0.80). Conclusions: Clinical assessment of severe pallor results has a low specificity for the diagnosis of severe anaemia. To target blood transfusion Hb measurement by either Hemocue® or Sahli’s method for the cost of USD 4 or and USD 0.25 per test, respectively would be more cost-effective

    Immediate Transfusion in African Children with Uncomplicated Severe Anemia

    Get PDF
    Background The World Health Organization recommends not performing transfusions in African children hospitalized for uncomplicated severe anemia (hemoglobin level of 4 to 6 g per deciliter and no signs of clinical severity). However, high mortality and readmission rates suggest that less restrictive transfusion strategies might improve outcomes. Methods In this factorial, open-label, randomized, controlled trial, we assigned Ugandan and Malawian children 2 months to 12 years of age with uncomplicated severe anemia to immediate transfusion with 20 ml or 30 ml of whole-blood equivalent per kilogram of body weight, as determined in a second simultaneous randomization, or no immediate transfusion (control group), in which transfusion with 20 ml of whole-blood equivalent per kilogram was triggered by new signs of clinical severity or a drop in hemoglobin to below 4 g per deciliter. The primary outcome was 28-day mortality. Three other randomizations investigated transfusion volume, postdischarge supplementation with micronutrients, and postdischarge prophylaxis with trimethoprim–sulfamethoxazole. Results A total of 1565 children (median age, 26 months) underwent randomization, with 778 assigned to the immediate-transfusion group and 787 to the control group; 984 children (62.9%) had malaria. The children were followed for 180 days, and 71 (4.5%) were lost to follow-up. During the primary hospitalization, transfusion was performed in all the children in the immediate-transfusion group and in 386 (49.0%) in the control group (median time to transfusion, 1.3 hours vs. 24.9 hours after randomization). The mean (±SD) total blood volume transfused per child was 314±228 ml in the immediate-transfusion group and 142±224 ml in the control group. Death had occurred by 28 days in 7 children (0.9%) in the immediate-transfusion group and in 13 (1.7%) in the control group (hazard ratio, 0.54; 95% confidence interval [CI], 0.22 to 1.36; P=0.19) and by 180 days in 35 (4.5%) and 47 (6.0%), respectively (hazard ratio, 0.75; 95% CI, 0.48 to 1.15), without evidence of interaction with other randomizations (P>0.20) or evidence of between-group differences in readmissions, serious adverse events, or hemoglobin recovery at 180 days. The mean length of hospital stay was 0.9 days longer in the control group. Conclusions There was no evidence of differences in clinical outcomes over 6 months between the children who received immediate transfusion and those who did not. The triggered-transfusion strategy in the control group resulted in lower blood use; however, the length of hospital stay was longer, and this strategy required clinical and hemoglobin monitoring

    Transfusion Volume for Children with Severe Anemia in Africa

    Get PDF
    BACKGROUND Severe anemia (hemoglobin level, <6 g per deciliter) is a leading cause of hospital admission and death in children in sub-Saharan Africa. The World Health Organization recommends transfusion of 20 ml of whole-blood equivalent per kilogram of body weight for anemia, regardless of hemoglobin level. METHODS In this factorial, open-label trial, we randomly assigned Ugandan and Malawian children 2 months to 12 years of age with a hemoglobin level of less than 6 g per deciliter and severity features (e.g., respiratory distress or reduced consciousness) to receive immediate blood transfusion with 20 ml per kilogram or 30 ml per kilogram. Three other randomized analyses investigated immediate as compared with no immediate transfusion, the administration of postdischarge micronutrients, and postdischarge prophylaxis with trimethoprim–sulfamethoxazole. The primary outcome was 28-day mortality. RESULTS A total of 3196 eligible children (median age, 37 months; 2050 [64.1%] with malaria) were assigned to receive a transfusion of 30 ml per kilogram (1598 children) or 20 ml per kilogram (1598 children) and were followed for 180 days. A total of 1592 children (99.6%) in the higher-volume group and 1596 (99.9%) in the lower-volume group started transfusion (median, 1.2 hours after randomization). The mean (±SD) volume of total blood transfused per child was 475±385 ml and 353±348 ml, respectively; 197 children (12.3%) and 300 children (18.8%) in the respective groups received additional transfusions. Overall, 55 children (3.4%) in the higher-volume group and 72 (4.5%) in the lower-volume group died before 28 days (hazard ratio, 0.76; 95% confidence interval [CI], 0.54 to 1.08; P=0.12 by log-rank test). This finding masked significant heterogeneity in 28-day mortality according to the presence or absence of fever (>37.5°C) at screening (P=0.001 after Sidak correction). Among the 1943 children (60.8%) without fever, mortality was lower with a transfusion volume of 30 ml per kilogram than with a volume of 20 ml per kilogram (hazard ratio, 0.43; 95% CI, 0.27 to 0.69). Among the 1253 children (39.2%) with fever, mortality was higher with 30 ml per kilogram than with 20 ml per kilogram (hazard ratio, 1.91; 95% CI, 1.04 to 3.49). There was no evidence of differences between the randomized groups in readmissions, serious adverse events, or hemoglobin recovery at 180 days. CONCLUSIONS Overall mortality did not differ between the two transfusion strategies. (Funded by the Medical Research Council and Department for International Development, United Kingdom; TRACT Current Controlled Trials number, ISRCTN84086586.
    corecore