9 research outputs found

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine

    Rekombinant uttryck och karakterisering av förmodade polystyrennedbrytande enzymer i Trichoderma reesei

    No full text
    Accumulating plastic waste has turned into a global issue, due to the currently dominating linear value chain of plastic materials. Only a fraction of all plastics produced is returned to the value chain by recycling, and the rest is destroyed by incineration or ends up in nature. The linear value chain does not only lead to great economic loss but contributes significantly to environmental pollution and disrupts ecosystems. New efficient methods for recycling plastic waste could help increase the recycling rate. This master’s thesis studies the polymer degrading capability of putative polystyrene degrading enzymes that could be utilised in biotechnical recycling of polystyrene. Polystyrene is considered non-biodegradable and highly recalcitrant to degradation due to its complex chemical structure. No polystyrene degrading enzymes have previously been characterised, although polystyrene degrading microorganisms have been described. The putative polystyrene degrading enzymes originate from a white-rot fungus, capable of degrading polystyrene. The approach adapted in this work for studying their polystyrene degrading capability was recombinant expression of the enzymes with the synthetic expression system (SES) in the expression host Trichoderma reesei. Eight strains of T. reesei were successfully constructed and the culture supernatants were screened for enzyme activity. The polymer degrading capability was assayed on several polymers, and degradation products were looked for with gas-chromatography mass-spectrometry and high-performance liquid chromatography. However, no degradation products could be detected. It was evident that both the expression and the reaction conditions need to be further optimised before definite conclusions on the polystyrene degrading capability can be drawn.Ackumulationen av plastavfall har vuxit till ett stort globalt problem pĂ„ grund av materialets lineĂ€ra vĂ€rdekedja. Endast en brĂ„kdel av all tillverkad plast returneras till vĂ€rdekedjan genom Ă„tervinning. Resten gĂ„r förlorad genom förbrĂ€nning eller hamnar i naturen. Den lineĂ€ra vĂ€rdekedjan resulterar inte bara i stor ekonomisk förlust, utan bidrar Ă€ven avsevĂ€rt till miljöförorening och sĂ€tter ekosystem ur balans. Nya effektiva metoder för att Ă„tervinna plastavfall kunde frĂ€mja plastĂ„tervinningen. Det hĂ€r diplomarbetet studerar de polymernedbrytande egenskaperna av förmodade polystyren-nedbrytande enzymer som kunde utnyttjas i bioteknisk Ă„tervinning av polystyren. Polystyren anses vara icke-bionedbrytbar och Ă€r vĂ€ldigt resistent mot nedbrytning pĂ„ grund av dess komplexa kemiska struktur. Inga polystyrennedbrytande enzymer har tidigare karakteriserats, Ă€ven om polystyrennedbrytande mikroorganismer har beskrivits. De förmodade polystyrennedbrytande enzymerna hĂ€rstammar frĂ„n en vitrötesvamp kapabel att bryta ner polystyren. TillvĂ€gagĂ„ngssĂ€ttet som tillĂ€mpades i detta arbete för att studera deras polystyrennedbrytande egenskaper, var rekombinant uttryck av enzymerna med det syntetiska uttryckssystemet SES i vĂ€rdorganismen Trichoderma reesei. Åtta stammar av T. reesei var med framgĂ„ng konstruerade och kultursupernatanterna sĂ„llades för enzymaktivitet. PolymernedbrytningsförmĂ„gan testades pĂ„ flera olika polymerer, och de resulterande nedbrytningsprodukterna undersöktes med gaskromatografi-masspektrometri och högupplösande vĂ€tskekromatografi. Inga nedbrytningsprodukter kunde dessvĂ€rre upptĂ€ckas. Bevisligen behöver bĂ„de uttrycks- och reaktionsförhĂ„llandena vidare optimeras innan definitiva slutsatser gĂ€llande den polystyrennedbrytande förmĂ„gan kan dras

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.</p
    corecore