103 research outputs found

    Deactivation of a Vanadium-Based SCR Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation

    Get PDF
    We have investigated how the exhaust gases from a heavy-duty Euro VI engine, powered with biogas impact a vanadium-based selective catalytic reduction (SCR) catalyst in terms of performance. A full Euro VI emission control system was used and the accumulation of catalyst poisons from the combustion was investigated for the up-stream particulate filter as well as the SCR catalyst. The NO(x)reduction performance in terms of standard, fast and NO2-rich SCR was evaluated before and after exposure to exhaust from a biogas-powered engine for 900 h. The SCR catalyst retains a significant part of its activity towards NO(x)reduction after exposure to biogas exhaust, likely due to capture of catalyst poisons on the up-stream components where the deactivation of the oxidation catalyst is especially profound. At lower temperatures some deactivation of the first part of the SCR catalyst was observed which could be explained by a considerably higher surface V4+/V(5+)ratio for this sample compared to the other samples. The higher value indicates that the reoxidation of V(4+)to V(5+)is partially hindered, blocking the redox cycle for parts of the active sites

    Deactivation of a Pd/Pt Bimetallic Oxidation Catalyst Used in a Biogas-Powered Euro VI Heavy-Duty Engine Installation

    Get PDF
    The reduction of anthropogenic greenhouse gas emissions is crucial to avoid further warming of the planet. We investigated how effluent gases from a biogas powered Euro VI heavy-duty engine impact the performance of a bimetallic (palladium and platinum) oxidation catalyst. Using synthetic gas mixtures, the oxidation of NO, CO, and CH4\ua0before and after exposure to biogas exhaust for 900 h was studied. The catalyst lost most of its activity for methane oxidation, and the activity loss was most severe for the inlet part of the aged catalyst. Here, a clear sintering of Pt and Pd was observed, and higher concentrations of catalyst poisons such as sulfur and phosphorus were detected. The sintering and poisoning resulted in less available active sites and hence lower activity for methane oxidation

    18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    Get PDF
    Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer's disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein

    Small vessel disease in primary familial brain calcification with novel truncating PDGFB variants

    Get PDF
    Introduction. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterised by bilateral calcification in the brain, especially in the basal ganglia, leading to neurological and neuropsychiatric manifestations. White matter hyperintensities (WMH) have been described in patients with PFBC and pathogenic variants in the gene for platelet-derived growth factor beta polypeptide (PDGFB), suggesting a manifest cerebrovascular process. We present below the cases of two PFBC families with PDGFB variants and stroke or transient ischaemic attack (TIA) episodes. We examine the possible correlation between PFBC and vascular events as stroke/TIA, and evaluate whether signs for vascular disease in this condition are systemic or limited to the cerebral vessels. Material and methods. Two Swedish families with novel truncating PDGFB variants, p.Gln140* and p.Arg191*, are described clinically and radiologically. Subcutaneous capillary vessels in affected and unaffected family members were examined by light and electron microscopy. Results. All mutation carriers showed WMH and bilateral brain calcifications. The clinical presentations differed, with movement disorder symptoms dominating in family A, and psychiatric symptoms in family B. However, affected members of both families had stroke, TIA, and/or asymptomatic intracerebral ischaemic lesions. Only one of the patients had classical vascular risk factors. Skin microvasculature was normal. Conclusions. Patients with these PDGFB variants develop microvascular changes in the brain, but not the skin. PDGFB-related small vessel disease can manifest radiologically as cerebral haemorrhage or ischaemia, and may explain TIA or stroke in patients without other vascular risk factors

    Understanding variation in national climate change adaptation: securitization in focus

    Get PDF
    Climate change is recognized today not just as a pressing and prominent issue on government agendas but also one that has been increasingly ‘securitized’ in a variety of national and global settings. We know little, however, if climate change adaptation, as a subset of climate action, has followed a similarly securitized path. This article addresses that question, exploring not only if climate change adaptation has been securitized but also what type of securitization – threat-oriented or risk-oriented – has emerged. Turning our empirical focus to three national settings of Norway, Sweden, and The Netherlands, we look for signs of securitization as well as whether securitization has been facilitated, shaped, or even blocked by existing governance features in each setting. We use this study to link the securitization literature with environmental governance approaches by building a novel analytical framework. Our findings show some intriguing and unexpected patterns, including evidence of risk-oriented securitization couched nevertheless as ‘business as usual’. We contribute to the growing debate on securitization in environmental governance while also casting new light on national climate change adaptation processes.publishedVersio

    Establishing Streptomycin Epidemiological Cut-Off Values for Salmonella and Escherichia coli

    Get PDF
    This study was conducted to elucidate the accuracy of the current streptomycin epidemiological cut-off value (ECOFF) for Escherichia coli and Salmonella spp. A total of 236 Salmonella enterica and 208 E. coli isolates exhibiting MICs between 4 and 32¿mg/L were selected from 12 countries. Isolates were investigated by polymerase chain reaction for aadA, strA, and strB streptomycin resistance genes. Out of 236 Salmonella isolates, 32 (13.5%) yielded amplicons for aadA (n¿=¿23), strA (n¿=¿9), and strB (n¿=¿11). None of the 60 Salmonella isolates exhibiting MIC 4¿mg/L harbored resistance genes. Of the Salmonella isolates exhibiting MICs 8¿mg/L, 16¿mg/L, and 32¿mg/L, 1.6%, 15%, and 39%, respectively, tested positive for one or more genes. For most monitoring programs, the streptomycin ECOFF for Salmonella is wild type (WT) =32 or =16¿mg/L. A cut-off value of WT =32¿mg/L would have misclassified 13.5% of the strains as belonging to the WT population, since this proportion of strains harbored resistance genes and exhibited MICs =32¿mg/L. Out of 208 E. coli strains, 80 (38.5%) tested positive for aadA (n¿=¿69), strA (n¿=¿18), and strB (n¿=¿31). Of the E. coli isolates exhibiting MICs of 4¿mg/L, 8¿mg/L, 16¿mg/L, and 32¿mg/L, 3.6%, 17.6%, 53%, and 82.3%, respectively, harbored any of the three genes. Based on the European Committee on Antimicrobial Susceptibility Testing guidelines (ECOFF =16¿mg/L), 25% of the E. coli strains presenting MIC =16¿mg/L would have been incorrectly categorized as belonging to the WT population. The authors recommend an ECOFF value of WT =16¿mg/L for Salmonella and WT =8¿mg/L for E. coli

    Ultrafast all-optical switching by single photons

    Full text link
    An outstanding goal in quantum optics is the realization of fast optical non-linearities at the single-photon level. Such non-linearities would allow for the realization of optical devices with new functionalities such as a single-photon switch/transistor or a controlled-phase gate, which could form the basis of future quantum optical technologies. While non-linear optics effects at the single-emitter level have been demonstrated in different systems, including atoms coupled to Fabry-Perot or toroidal micro-cavities, super-conducting qubits in strip-line resonators or quantum dots (QDs) in nano-cavities, none of these experiments so far has demonstrated single-photon switching on ultrafast timescales. Here, we demonstrate that in a strongly coupled QD-cavity system the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes-Cummings manifold with a switching time of 20 ps. As an additional device application, we use this non-linearity to implement a single-photon pulse-correlator. Our QD-cavity system could form the building-block of future high-bandwidth photonic networks operating in the quantum regime
    • …
    corecore