1,595 research outputs found
Quality of a Which-Way Detector
We introduce a measure Q of the "quality" of a quantum which-way detector,
which characterizes its intrinsic ability to extract which-way information in
an asymmetric two-way interferometer. The "quality" Q allows one to separate
the contribution to the distinguishability of the ways arising from the quantum
properties of the detector from the contribution stemming from a-priori
which-way knowledge available to the experimenter, which can be quantified by a
predictability parameter P. We provide an inequality relating these two sources
of which-way information to the value of the fringe visibility displayed by the
interferometer. We show that this inequality is an expression of duality,
allowing one to trace the loss of coherence to the two reservoirs of which-way
information represented by Q and P. Finally, we illustrate the formalism with
the use of a quantum logic gate: the Symmetric Quanton-Detecton System (SQDS).
The SQDS can be regarded as two qubits trying to acquire which way information
about each other. The SQDS will provide an illustrating example of the
reciprocal effects induced by duality between system and which-way detector.Comment: 10 pages, 5 figure
E10 and SO(9,9) invariant supergravity
We show that (massive) D=10 type IIA supergravity possesses a hidden rigid
SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional
reduction to one (time-like) dimension. We explicitly construct the associated
locally supersymmetric Lagrangian in one dimension, and show that its bosonic
sector, including the mass term, can be equivalently described by a truncation
of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a
decomposition of E10 under its so(9,9) subalgebra. This decomposition is
presented up to level 10, and the even and odd level sectors are identified
tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further
truncation to the level \ell=0 sector yields a model related to the reduction
of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated
to the latter, is shown to be a proper subalgebra of E10, in accord with the
embedding of type I into type IIA supergravity. The corresponding decomposition
of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable
by downloading sourc
Simulation of cosmic irradiation conditions in thick target arrangements
One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target
G+++ Invariant Formulation of Gravity and M-Theories: Exact BPS Solutions
We present a tentative formulation of theories of gravity with suitable
matter content, including in particular pure gravity in D dimensions, the
bosonic effective actions of M-theory and of the bosonic string, in terms of
actions invariant under very-extended Kac-Moody algebras G+++. We conjecture
that they host additional degrees of freedom not contained in the conventional
theories. The actions are constructed in a recursive way from a level expansion
for all very-extended algebras G+++. They constitute non-linear realisations on
cosets, a priori unrelated to space-time, obtained from a modified Chevalley
involution. Exact solutions are found for all G+++. They describe the algebraic
properties of BPS extremal branes, Kaluza-Klein waves and Kaluza-Klein
monopoles. They illustrate the generalisation to all G+++ invariant theories of
the well-known duality properties of string theories by expressing duality as
Weyl invariance in G+++. Space-time is expected to be generated dynamically. In
the level decomposition of E8+++ = E11, one may indeed select an A10
representation of generators Pa which appears to engender space-time
translations by inducing infinite towers of fields interpretable as field
derivatives in space and time.Comment: Latex 45 pages, 1 figure. Discussion on pages 19 and 20 altered.
Appendix B amplified. 4 footnotes added. 2 references added. Acknowledgments
updated. Additional minor correction
A Meaner King uses Biased Bases
The mean king problem is a quantum mechanical retrodiction problem, in which
Alice has to name the outcome of an ideal measurement on a d-dimensional
quantum system, made in one of (d+1) orthonormal bases, unknown to Alice at the
time of the measurement. Alice has to make this retrodiction on the basis of
the classical outcomes of a suitable control measurement including an entangled
copy. We show that the existence of a strategy for Alice is equivalent to the
existence of an overall joint probability distribution for (d+1) random
variables, whose marginal pair distributions are fixed as the transition
probability matrices of the given bases. In particular, for d=2 the problem is
decided by John Bell's classic inequality for three dichotomic variables. For
mutually unbiased bases in any dimension Alice has a strategy, but for randomly
chosen bases the probability for that goes rapidly to zero with increasing d.Comment: 5 pages, 1 figur
On mechanisms that enforce complementarity
In a recent publication Luis and Sanchez-Soto arrive at the conclusion that
complementarity is universally enforced by random classical phase kicks. We
disagree. One could just as well argue that quantum entanglement is the
universal mechanism. Both claims of universality are unjustified, however.Comment: 4 page
Viable entanglement detection of unknown mixed states in low dimensions
We explore procedures to detect entanglement of unknown mixed states, which
can be experimentally viable. The heart of the method is a hierarchy of simple
feasibility problems, which provides sufficient conditions to entanglement. Our
numerical investigations indicate that the entanglement is detected with a cost
which is much lower than full state tomography. The procedure is applicable to
both free and bound entanglement, and involves only single copy measurements.Comment: 8 pages, 9 figures, 4 table
Duality in linearized gravity
We show that duality transformations of linearized gravity in four
dimensions, i.e., rotations of the linearized Riemann tensor and its dual into
each other, can be extended to the dynamical fields of the theory so as to be
symmetries of the action and not just symmetries of the equations of motion.
Our approach relies on the introduction of two "superpotentials", one for the
spatial components of the spin-2 field and the other for their canonically
conjugate momenta. These superpotentials are two-index, symmetric tensors. They
can be taken to be the basic dynamical fields and appear locally in the action.
They are simply rotated into each other under duality. In terms of the
superpotentials, the canonical generator of duality rotations is found to have
a Chern-Simons like structure, as in the Maxwell case.Comment: 10 pages; introduction rewritten and references adde
An E9 multiplet of BPS states
We construct an infinite E9 multiplet of BPS states for 11D supergravity. For
each positive real root of E9 we obtain a BPS solution of 11D supergravity, or
of its exotic counterparts, depending on two non-compact transverse space
variables. All these solutions are related by U-dualities realised via E9 Weyl
transformations in the regular embedding of E9 in E10, E10 in E11. In this way
we recover the basic BPS solutions, namely the KK-wave, the M2 brane, the M5
brane and the KK6-monopole, as well as other solutions admitting eight
longitudinal space dimensions. A novel technique of combining Weyl reflexions
with compensating transformations allows the construction of many new BPS
solutions, each of which can be mapped to a solution of a dual effective action
of gravity coupled to a certain higher rank tensor field. For real roots of E10
which are not roots of E9, we obtain additional BPS solutions transcending 11D
supergravity (as exemplified by the lowest level solution corresponding to the
M9 brane). The relation between the dual formulation and the one in terms of
the original 11D supergravity fields has significance beyond the realm of BPS
solutions. We establish the link with the Geroch group of general relativity,
and explain how the E9 duality transformations generalize the standard Hodge
dualities to an infinite set of `non-closing dualities'.Comment: 76 pages, 6 figure
Coherent states and the classical-quantum limit considered from the point of view of entanglement
Three paradigms commonly used in classical, pre-quantum physics to describe
particles (that is: the material point, the test-particle and the diluted
particle (droplet model)) can be identified as limit-cases of a quantum regime
in which pairs of particles interact without getting entangled with each other.
This entanglement-free regime also provides a simplified model of what is
called in the decoherence approach "islands of classicality", that is,
preferred bases that would be selected through evolution by a Darwinist
mechanism that aims at optimising information. We show how, under very general
conditions, coherent states are natural candidates for classical pointer
states. This occurs essentially because, when a (supposedly bosonic) system
coherently exchanges only one quantum at a time with the (supposedly bosonic)
environment, coherent states of the system do not get entangled with the
environment, due to the bosonic symmetry.Comment: This is the definitive version of a paper entitled The
classical-quantum limit considered from the point of view of entanglement: a
survey (author T. Durt). The older version has been replaced by the
definitive on
- …