36 research outputs found

    On the Origin of the Outgoing Black Hole Modes

    Get PDF
    The question of how to account for the outgoing black hole modes without drawing upon a transplanckian reservoir at the horizon is addressed. It is argued that the outgoing modes must arise via conversion from ingoing modes. It is further argued that the back-reaction must be included to avoid the conclusion that particle creation cannot occur in a strictly stationary background. The process of ``mode conversion" is known in plasma physics by this name and in condensed matter physics as ``Andreev reflection" or ``branch conversion". It is illustrated here in a linear Lorentz non-invariant model introduced by Unruh. The role of interactions and a physical short distance cutoff is then examined in the sonic black hole formed with Helium-II.Comment: 12 pages, plain latex, 2 figures included using psfig; Analogy to ``Andreev reflection" in superfluid systems noted, references and acknowledgment added, format changed to shorten tex

    Very Long Time Scales and Black Hole Thermal Equilibrium

    Full text link
    We estimate the very long time behaviour of correlation functions in the presence of eternal black holes. It was pointed out by Maldacena (hep-th 0106112) that their vanishing would lead to a violation of a unitarity-based bound. The value of the bound is obtained from the holographic dual field theory. The correlators indeed vanish in a semiclassical bulk approximation. We trace the origin of their vanishing to the continuum energy spectrum in the presence of event horizons. We elaborate on the two very long time scales involved: one associated with the black hole and the other with a thermal gas in the vacuum background. We find that assigning a role to the thermal gas background, as suggested in the above work, does restore the compliance with a time-averaged unitarity bound. We also find that additional configurations are needed to explain the expected time dependence of the Poincar\'e recurrences and their magnitude. It is suggested that, while a semiclassical black hole does reproduce faithfully ``coarse grained'' properties of the system, additional dynamical features of the horizon may be necessary to resolve a finer grained information-loss problem. In particular, an effectively formed stretched horizon could yield the desired results.Comment: 30 pages, harvmac, 1 eps figur

    The singleton action action from the supermembrane

    Full text link
    We derive the free Osp(8|4) singleton action by sending the M2brane to the Minkowski boundary of an AdS_4x{\cal M}_7 background. We do this by means of the solvable Lie algebra parametrization of the coset space. We also give some comments on singleton actions from membranes on AdS_4xG/H backgrounds.Comment: 9 pages, 1 figure. Talk given by P. Termonia at the TMR meeting of the project "Quantum Aspects of Gauge Theories, Supersymmetry and Unification", Corfu '98, TMR contract ERBFMRX-CT96-004

    Black brane solutions related to non-singular Kac-Moody algebras

    Full text link
    A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form M = M_0 x M_1 x ... x M_n, where M_i are Einstein spaces (i > 0). The sigma-model approach and exact solutions with intersecting composite branes (e.g., solutions with harmonic functions and black brane ones) with intersection rules related to non-singular Kac-Moody (KM) algebras (e.g. hyperbolic ones) are considered. Some examples of black brane solutions are presented, e.g., those corresponding to hyperbolic KM algebras: H_2(q,q) (q > 2), HA_2^(1) = A_2^{++} and to the Lorentzian KM algebra P_{10}.Comment: 16 pages, Late

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    Transcriptome Profiling of Circulating Tumor Cells to Predict Clinical Outcomes in Metastatic Castration-Resistant Prostate Cancer.

    No full text
    The clinical utility of circulating tumor cells (CTC) as a non-invasive multipurpose biomarker is broadly recognized. The earliest methods for enriching CTCs from whole blood rely on antibody-based positive selection. The prognostic utility of CTC enumeration using positive selection with the FDA-approved CellSearch(TM) system has been demonstrated in numerous studies. The capture of cells with specific protein phenotypes does not fully represent cancer heterogeneity and therefore does not realize the prognostic potential of CTC liquid biopsies. To avoid this selection bias, CTC enrichment based on size and deformability may provide better fidelity, i.e., facilitate the characterization of CTCs with any phenotype. In this study, the recently FDA-approved Parsortix(®) technology was used to enrich CTCs from prostate cancer (PCa) patients for transcriptome analysis using HyCEAD(TM) technology. A tailored PCa gene panel allowed us to stratify metastatic castration-resistant prostate cancer (mCRPC) patients with clinical outcomes. In addition, our findings suggest that targeted CTC transcriptome profiling may be predictive of therapy response
    corecore