117 research outputs found

    Successful Immunization of an Allogeneic Bone Marrow Transplant Recipient with Live, Attenuated Yellow Fever Vaccine

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75383/1/j.1708-8305.2009.00336.x.pd

    Incompetence of Neutrophils to Invasive Group A streptococcus Is Attributed to Induction of Plural Virulence Factors by Dysfunction of a Regulator

    Get PDF
    Group A streptococcus (GAS) causes variety of diseases ranging from common pharyngitis to life-threatening severe invasive diseases, including necrotizing fasciitis and streptococcal toxic shock-like syndrome. The characteristic of invasive GAS infections has been thought to attribute to genetic changes in bacteria, however, no clear evidence has shown due to lack of an intriguingly study using serotype-matched isolates from clinical severe invasive GAS infections. In addition, rare outbreaks of invasive infections and their distinctive pathology in which infectious foci without neutrophil infiltration hypothesized us invasive GAS could evade host defense, especially neutrophil functions. Herein we report that a panel of serotype-matched GAS, which were clinically isolated from severe invasive but not from non-invaive infections, could abrogate functions of human polymorphnuclear neutrophils (PMN) in at least two independent ways; due to inducing necrosis to PMN by enhanced production of a pore-forming toxin streptolysin O (SLO) and due to impairment of PMN migration via digesting interleukin-8, a PMN attracting chemokine, by increased production of a serine protease ScpC. Expression of genes was upregulated by a loss of repressive function with the mutation of csrS gene in the all emm49 severe invasive GAS isolates. The csrS mutants from clinical severe invasive GAS isolates exhibited high mortality and disseminated infection with paucity of neutrophils, a characteristic pathology seen in human invasive GAS infection, in a mouse model. However, GAS which lack either SLO or ScpC exhibit much less mortality than the csrS-mutated parent invasive GAS isolate to the infected mice. These results suggest that the abilities of GAS to abrogate PMN functions can determine the onset and severity of invasive GAS infection

    Group A Streptococcus Secreted Esterase Hydrolyzes Platelet-Activating Factor to Impede Neutrophil Recruitment and Facilitate Innate Immune Evasion

    Get PDF
    The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses

    Dispersal of Group A Streptococcal Biofilms by the Cysteine Protease SpeB Leads to Increased Disease Severity in a Murine Model

    Get PDF
    Group A Streptococcus (GAS) is a Gram-positive human pathogen best known for causing pharyngeal and mild skin infections. However, in the 1980's there was an increase in severe GAS infections including cellulitis and deeper tissue infections like necrotizing fasciitis. Particularly striking about this elevation in the incidence of severe disease was that those most often affected were previously healthy individuals. Several groups have shown that changes in gene content or regulation, as with proteases, may contribute to severe disease; yet strains harboring these proteases continue to cause mild disease as well. We and others have shown that group A streptococci (MGAS5005) reside within biofilms both in vitro and in vivo. That is to say that the organism colonizes a host surface and forms a 3-dimensional community encased in a protective matrix of extracellular protein, DNA and polysaccharide(s). However, the mechanism of assembly or dispersal of these structures is unclear, as is the relationship of these structures to disease outcome. Recently we reported that allelic replacement of the streptococcal regulator srv resulted in constitutive production of the streptococcal cysteine protease SpeB. We further showed that the constitutive production of SpeB significantly decreased MGAS5005Δsrv biofilm formation in vitro. Here we show that mice infected with MGAS5005Δsrv had significantly larger lesion development than wild-type infected animals. Histopathology, Gram-staining and immunofluorescence link the increased lesion development with lack of disease containment, lack of biofilm formation, and readily detectable levels of SpeB in the tissue. Treatment of MGAS5005Δsrv infected lesions with a chemical inhibitor of SpeB significantly reduced lesion formation and disease spread to wild-type levels. Furthermore, inactivation of speB in the MGAS5005Δsrv background reduced lesion formation to wild-type levels. Taken together, these data suggest a mechanism by which GAS disease may transition from mild to severe through the Srv mediated dispersal of GAS biofilms

    Thermoregulation of Capsule Production by Streptococcus pyogenes

    Get PDF
    The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface

    Long Lamai community ICT4D E‐commerce system modelling: an agent oriented role‐based approach

    Get PDF
    This paper presents the post‐mortem report upon completion of the Long Lamai e‐commerce development project. Some weaknesses with regards to the current software modelling approach are identified and an alternative role‐based approach is proposed. We argue that the existing software modelling technique is not suitable for modelling, making it difficult to establish a good contract between stakeholders causing delays in the project delivery. The role‐based approach is able to explicitly highlight the responsibilities among stakeholders, while also forming the contract agreement among them leading towards sustainable ICT4D
    corecore