28 research outputs found

    Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    Get PDF
    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and/or by rendezvousing with a sample-return spacecraft launched from the surface of Mars

    Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

    Get PDF
    The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp

    Historical trends in greenhouse gas emissions of the Alberta oil sands (1970–2010)

    No full text
    There has been increased scrutiny of the Alberta oil sands due to their high carbon intensity (CI) relative to conventional crude oil. Relying entirely on public and peer-reviewed data sources, we examine historical trends in the CI of oil sands extraction, upgrading, and refining. Monthly data were collected and interpolated from 1970 to 2010 (inclusive) for each oil sands project. Results show a reduction in oil sands CI over time, with industry-average full-fuel cycle (well-to-wheels, WTW) CI declining from 165 gCO _2 e MJ ^−1 higher heating value (HHV) of reformulated gasoline (RFG) to 105 (−12, +9) gCO _2 e MJ ^−1 HHV RFG. 2010 averages by production pathways are 102 gCO _2 e MJ ^−1 for Mining and 111 gCO _2 e MJ ^−1 for in situ . The CI of mining-based projects has declined due to upgrader efficiency improvements and a shift away from coke to natural gas as a process fuel. In situ projects have benefitted from substantial reductions in fugitive emissions from bitumen batteries. Both mining and in situ projects have benefitted from improved refining efficiencies. However, despite these improvements, the CI of oil sands production (on a pathway-average basis) ranges from 12 to 24% higher than CI values from conventional oil production. Due to growing output, total emissions from the oil sands continue to increase despite improved efficiency: total upstream emissions were roughly 65 MtCO _2 e in 2010, or 9% of Canada’s emissions

    Aerial Interyear Comparison and Quantification of Methane Emissions Persistence in the Bakken Formation of North Dakota, USA

    No full text
    We performed an infrared optical gas imaging (OGI) survey by helicopter of hydrocarbon emissions in the Bakken formation of North Dakota. One year after an earlier survey of 682 well pads in September of 2014, the same helicopter crew resurveyed 353 well pads in 2015 to examine the persistence of emissions. Twenty-one newly producing well pads were added in the same sampling blocks. An instrumented aircraft was also used to quantify emissions from 33 plumes identified by aerial OGI. Well pads emitting methane and ethane in 2014 were far more likely to be emitting in 2015 than would be expected by chance; Monte Carlo simulations suggest >5σ deviation (<i>p</i> < 0.0001) from random assignment of detectable emissions between survey years. Scaled up using basin-wide leakage estimates, the emissions quantified by aircraft are sufficient to explain previously observed basin-wide emissions of methane and ethane

    Aerial Interyear Comparison and Quantification of Methane Emissions Persistence in the Bakken Formation of North Dakota, USA

    No full text
    We performed an infrared optical gas imaging (OGI) survey by helicopter of hydrocarbon emissions in the Bakken formation of North Dakota. One year after an earlier survey of 682 well pads in September of 2014, the same helicopter crew resurveyed 353 well pads in 2015 to examine the persistence of emissions. Twenty-one newly producing well pads were added in the same sampling blocks. An instrumented aircraft was also used to quantify emissions from 33 plumes identified by aerial OGI. Well pads emitting methane and ethane in 2014 were far more likely to be emitting in 2015 than would be expected by chance; Monte Carlo simulations suggest >5σ deviation (<i>p</i> < 0.0001) from random assignment of detectable emissions between survey years. Scaled up using basin-wide leakage estimates, the emissions quantified by aircraft are sufficient to explain previously observed basin-wide emissions of methane and ethane

    Aerial Interyear Comparison and Quantification of Methane Emissions Persistence in the Bakken Formation of North Dakota, USA

    No full text
    We performed an infrared optical gas imaging (OGI) survey by helicopter of hydrocarbon emissions in the Bakken formation of North Dakota. One year after an earlier survey of 682 well pads in September of 2014, the same helicopter crew resurveyed 353 well pads in 2015 to examine the persistence of emissions. Twenty-one newly producing well pads were added in the same sampling blocks. An instrumented aircraft was also used to quantify emissions from 33 plumes identified by aerial OGI. Well pads emitting methane and ethane in 2014 were far more likely to be emitting in 2015 than would be expected by chance; Monte Carlo simulations suggest >5σ deviation (<i>p</i> < 0.0001) from random assignment of detectable emissions between survey years. Scaled up using basin-wide leakage estimates, the emissions quantified by aircraft are sufficient to explain previously observed basin-wide emissions of methane and ethane

    Aerial Interyear Comparison and Quantification of Methane Emissions Persistence in the Bakken Formation of North Dakota, USA

    No full text
    We performed an infrared optical gas imaging (OGI) survey by helicopter of hydrocarbon emissions in the Bakken formation of North Dakota. One year after an earlier survey of 682 well pads in September of 2014, the same helicopter crew resurveyed 353 well pads in 2015 to examine the persistence of emissions. Twenty-one newly producing well pads were added in the same sampling blocks. An instrumented aircraft was also used to quantify emissions from 33 plumes identified by aerial OGI. Well pads emitting methane and ethane in 2014 were far more likely to be emitting in 2015 than would be expected by chance; Monte Carlo simulations suggest >5σ deviation (<i>p</i> < 0.0001) from random assignment of detectable emissions between survey years. Scaled up using basin-wide leakage estimates, the emissions quantified by aircraft are sufficient to explain previously observed basin-wide emissions of methane and ethane
    corecore