78 research outputs found

    Acoustics of weirs: Potential implications for micro-hydropower noise.

    Get PDF
    There is great potential for the expansion of the small or micro scale hydropower network. Of the 43 thousand weirs in the UK there are only 500 consented hydro schemes. Planning applications for such schemes require a noise assessment. Noise evaluation of a proposed renewable scheme is often complicated by the turbine sites having distinct noise characteristics in the first instance, which are often caused by the weirs themselves. Three types of weir were studied: Broad Crest weirs were studied in detail; this is complimented by further studies in Flat V and Crump weirs. Flow data was collected for ten sites from the Environment Agency and the National Rivers Flow Archive to assess the collected Sound Pressure Level (SPL) and calculated Sound poWer Level (SWL) in relation to various river flows. Weir head height, width and meteorological data were also collected. It has been shown that the SPL data collection method used was the right choice, as the greatest amplitudes at the water impact interface at all weir types was recorded. SPL and SWL were found to be within a 36e82 dBz and 45e86 dBz range respectively for all weir types. These values can be used in computer simulations of sound propagation. The mean SPL and SWL difference between the weir types are 6.1 dBz and 6.3 dBz. Head height has the greatest effect on SPLs. Attenuation with distance was found to be similar to that of a free field line source in general

    Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities

    Full text link

    Data from: Strong costs and benefits of winter acclimatization in Drosophila melanogaster

    No full text
    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions

    Data from: Trait specific consequences of inbreeding on adaptive phenotypic plasticity

    No full text
    Environmental changes may stress organisms and stimulate an adaptive phenotypic response. Effects of inbreeding often interact with the environment and can decrease fitness of inbred individuals exposed to stress more so than that of outbred individuals. Such an interaction may stem from a reduced ability of inbred individuals to respond plastically to environmental stress; however, this hypothesis has rarely been tested. In this study, we mimicked the genetic constitution of natural inbred populations by rearing replicate Drosophila melanogaster populations for 25 generations at a reduced population size (10 individuals). The replicate inbred populations, as well as control populations reared at a population size of 500, were exposed to a benign developmental temperature and two developmental temperatures at the lower and upper margins of their viable range. Flies developed at the three temperatures were assessed for traits known to vary across temperatures, namely abdominal pigmentation, wing size, and wing shape. We found no significant difference in phenotypic plasticity in pigmentation or in wing size between inbred and control populations, but a significantly higher plasticity in wing shape across temperatures in inbred compared to control populations. Given that the norms of reaction for the noninbred control populations are adaptive, we conclude that a reduced ability to induce an adaptive phenotypic response to temperature changes is not a general consequence of inbreeding and thus not a general explanation of inbreeding–environment interaction effects on fitness components

    Integrated genome-wide investigations of the housefly, a global vector of diseases reveal unique dispersal patterns and bacterial communities across farms

    No full text
    Background:Houseflies (Musca domesticaL.) live in intimate association with numerous microorganisms and is a vector of human pathogens. In temperate areas, houseflies willoverwinter in environments constructed by humans and recolonize surrounding areas in early summer. However, the dispersal patterns and associated bacteria across season and location are unclear.We used genotyping-by-sequencing (GBS) for the simultaneous identification and genotyping of thousands of Single Nucleotide Polymorphisms (SNPs) to establish dispersal patterns of houseflies across farms. Secondly, we used16S rRNA gene amplicon sequencing to establish the variation and association between bacterial communities and the housefly across farms. Results: Using GBS we identified 18,000 SNPs across 400 individualssampled within and between 11 dairy farms in Denmark. There was evidence for sub-structuring of Danish housefly populations and with genetic structure that differed across season and sex. Further, there was a strong isolation by distance (IBD) effect, but with large variation suggesting that other hidden geographic barriers are important. Large individual variations were observed in the community structure of the microbiome and it was found to be dependent on location, sex, and collection time. Furthermore, the relative prevalence of putative pathogens was highly dependent on location and collection time. Conclusion:We were able to identify SNPs for the determination of the spatiotemporal housefly genetic structure, and to establish the variation and association between bacterial communities and the housefly across farms using novel next‐generation sequencing (NGS)techniques. These results are important for disease prevention given the fine-scale population structure and IBD for the housefly, and that individual houseflies carry location specific bacteria including putative pathogens

    Data from: Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of Drosophila melanogaster

    No full text
    One solution to alleviate the detrimental genetic effects associated with reductions in population size and fragmentation is to introduce immigrants from other populations. While the effects of this genetic rescue on fitness traits are fairly well known, it is less clear to what extent inbreeding depression and subsequent genetic rescue affects behavioural traits. In this study, replicated crosses between inbred lines of Drosophila melanogaster were performed in order to investigate the effects of inbreeding and genetic rescue on egg-to-adult viability and negative geotaxis behaviour - a locomotor response used to measure e.g. the effects of physiological ageing. Transgenerational effects of outcrossing were investigated by examining the fitness consequences in both the F1 and F4 generation. The majority of inbred lines showed evidence for inbreeding depression for both egg-to-adult viability and behavioural performance (95% and 66% of lines, respectively), with inbreeding depression being more pronounced for viability compared to locomotor response. Subsequent outcrossing with immigrants led to an alleviation of the negative effects for both viability and geotaxis response resulting in inbred lines being similar to the outbred controls, with beneficial effects persisting from F1 to F4. Overall, the results clearly show that genetic rescue can provide transgenerational rescue of small, inbred populations by rapidly improving population fitness components. Thus, we show that even the negative effects of inbreeding on behaviour, similar to that of neurodegeneration associated with physiological ageing, can be reversed by genetic rescue

    Data from: Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura

    No full text
    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K+ in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling

    Data from: Experimental evolution under fluctuating thermal conditions does not reproduce patterns of adaptive clinal differentiation in Drosophila melanogaster

    No full text
    Experimental evolution can be a useful tool for testing the impact of environmental factors on adaptive changes in populations, and this approach is being increasingly used to understand the potential for evolutionary responses in populations under changing climates. However in natural populations selective factors will often be more complex than in laboratory environments and produce different patterns of adaptive differentiation. Here we test the ability for laboratory experimental evolution under different temperature cycles to reproduce well-known patterns of clinal variation in Drosophila melanogaster. Six fluctuating thermal regimes mimicking the natural temperature conditions along the east coast of Australia were initiated. Contrary to expectations based on field patterns there was no evidence for adaptation to thermal regimes as reflected by changes in cold and heat resistance following 1-3 years of laboratory natural selection. While laboratory evolution led to changes in starvation resistance, development time and body size, patterns were not consistent with those seen in natural populations. These findings highlight the complexity of factors affecting trait evolution in natural populations and indicate that caution is required when inferring likely evolutionary responses from the outcome of experimental evolution studies
    corecore