12 research outputs found

    The genes for the inter-α-inhibitor family share a homologous organization in human and mouse

    Full text link
    Inter-α-inhibitor ( IαI ) and related molecules in human are comprised of three evolutionarily related, heavy (H) chains and one light (L) chain, also termed bikunin. The latter originates from a precursor molecule that is cleaved to yield the bikunin and another protein designated α-1-microglobulin (A1m). The four H and L chains are encoded by four distinct genes designated H1, H2, H3 , and L . The L and H2 genes are localized onto human chromosomes (chr) 9 and 10, respectively, whereas the H1 and H3 genes are tandemly arranged on chr 3.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46989/1/335_2004_Article_BF00355432.pd

    Analysis of factor D isoforms in Malpuech-Michels-Mingarelli-Carnevale patients highlights the role of MASP-3 as a maturase in the alternative pathway of complement.

    No full text
    Factor D (FD), which is also known as adipsin, is regarded as the first-acting protease of the alternative pathway (AP) of complement. It has been suggested that FD is secreted as a mature enzyme that does not require subsequent activation. This view was challenged when it was shown that mice lacking mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1) and MASP-3 contain zymogenic FD (pro-FD), and it is becoming evident that MASP-3 is implicated in pro-FD maturation. However, the necessity of MASP-3 for pro-FD cleavage has been questioned, because AP activity is still observed in sera from MASP-1/3-deficient Malpuech-Michels-Mingarelli-Carnevale (3MC) patients. The identification of a novel 3MC patient carrying a previously unidentified MASP-3 G665S mutation prompted us to develop an analytical isoelectric focusing technique that resolves endogenous FD variants in complex samples. This enabled us to show that although 3MC patients predominantly contain pro-FD, they also contain detectable levels of mature FD. Moreover, using isoelectric focusing analysis, we show that both pro-FD and FD are present in the circulation of healthy donors. We characterized the naturally occurring 3MC-associated MASP-3 mutants and found that they all yielded enzymatically inactive proteins. Using MASP-3-depleted human serum, serum from 3MC patients, and Masp1/3(-/-) mice, we found that lack of enzymatically active MASP-3, or complete MASP-3 deficiency, compromises the conversion of pro-FD to FD. In summary, our observations emphasize that MASP-3 acts as an important maturase in the AP of complement, while also highlighting that there exists MASP-3-independent pro-FD maturation in 3MC patients

    Identification of a potential biomarker panel for the intake of the common dietary trans fat elaidic acid (transincrement9-C18:1)

    No full text
    Trans fatty acid intake has been correlated to an unfavorable plasma lipoprotein profile and an increased cardiovascular disease risk. The present study aimed to identify a plasma protein biomarker panel related to human intake of elaidic acid. The human liver cell line HepG2-SF was used as a model system, and the cells were maintained for seven days in serum-free medium containing 100 μM elaidic acid (transincrement9-C18:1), oleic acid (cisincrement9-C18:1) or stearic acid (C18:0). The secretomes were analyzed by stable isotope labeling of amino acids in cell culture (SILAC), difference in gel electrophoresis (DIGE) and gene expression microarray analysis. Twelve proteins were found to be differentially regulated based on SILAC data (> 1.3 fold change, P-value < 0.05), 13 proteins were found to be differentially regulated based on DIGE analysis (> 1.3 fold change, P-value < 0.05), and 17 mRNA transcripts encoding extracellular proteins were determined to be affected (> 1.3 fold change, P-value < 0.01) following the addition of elaidic acid compared to oleic acid or stearic acid. The results revealed that 37 proteins were regulated specifically in response to elaidic acid exposure, and nine of these proteins were confirmed to be regulated in this manner by using selected reaction monitoring mass spectrometry. © 2012 Elsevier B.V

    A common polymorphism in extracellular superoxide dismutase affects cardiopulmonary disease risk by altering protein distribution

    No full text
    International audienceBACKGROUND:The enzyme extracellular superoxide dismutase (EC-SOD; SOD3) is a major antioxidant defense in lung and vasculature. A nonsynonomous single-nucleotide polymorphism in EC-SOD (rs1799895) leads to an arginine to glycine amino acid substitution at position 213 (R213G) in the heparin-binding domain. In recent human genetic association studies, this single-nucleotide polymorphism attenuates the risk of lung disease, yet paradoxically increases the risk of cardiovascular disease.METHODS AND RESULTS:Capitalizing on the complete sequence homology between human and mouse in the heparin-binding domain, we created an analogous R213G single-nucleotide polymorphism knockin mouse. The R213G single-nucleotide polymorphism did not change enzyme activity, but shifted the distribution of EC-SOD from lung and vascular tissue to extracellular fluid (eg, bronchoalveolar lavage fluid and plasma). This shift reduces susceptibility to lung disease (lipopolysaccharide-induced lung injury) and increases susceptibility to cardiopulmonary disease (chronic hypoxic pulmonary hypertension).CONCLUSIONS:We conclude that EC-SOD provides optimal protection when localized to the compartment subjected to extracellular oxidative stress: thus, the redistribution of EC-SOD from the lung and pulmonary circulation to the extracellular fluids is beneficial in alveolar lung disease but detrimental in pulmonary vascular disease. These findings account for the discrepant risk associated with R213G in humans with lung diseases compared with cardiovascular diseases
    corecore