3,439 research outputs found

    A Study of Finite Temperature Gauge Theory in (2+1) Dimensions

    Get PDF
    We determine the critical couplings and the critical exponents of the finite temperature transition in SU(2) and SU(3) pure gauge theory in (2+1) dimensions. We also measure Wilson loops at T=0T=0 on a wide range of β\beta values using APE smearing to improve the signal. We extract the string tension σ\sigma from a fit to large distances, including a string fluctuation term. With these two entities we calculate Tc/σT_c/\sqrt{\sigma}.Comment: Talk presented at LATTICE96(finite temperature), not espcrc2 style: 7 pages, 4 ps figures, 22 k

    Staggered Fermion Actions with Improved Rotational Invariance

    Get PDF
    We introduce a class of improved actions for staggered fermions which to O(p^4) and O(p^6), respectively, lead to rotationally invariant propagators. We discuss the resulting reduction of flavour symmetry breaking in the meson spectrum and comment on the improvement in the calculation of thermodynamic observables.Comment: 3 pages and 4 figures, Contribution to Lattice 97 (Poster Session), late

    The Pressure in 2, 2+1 and 3 Flavour QCD

    Get PDF
    We calculate the pressure in QCD with two and three light quarks on a lattice of size 16^3x4 using tree level improved gauge and fermion actions. We argue that for temperatures T > 2T_c systematic effects due to the finite lattice cut-off and non-vanishing quark masses are below 15% in this calculation and give an estimate for the continuum extrapolated pressure in QCD with massless quarks. We find that the flavour dependence of the pressure is dominated by that of the Stefan-Boltzmann constant. Furthermore we perform a calculation of the pressure using 2 light (m_u,d/T=0.4) and one heavier quark (m_s/T = 1). In this case the pressure is reduced relative to that of three flavour QCD. This effect is stronger than expected from the mass dependence of an ideal Fermi gas.Comment: 13 pages, LaTeX2

    Critical behavior of 3D SU(2) gauge theory at finite temperature: exact results from universality

    Get PDF
    We show that universality arguments, namely the Svetitsky-Yaffe conjecture, allow one to obtain exact results on the critical behavior of 3D SU(2) gauge theory at the finite temperature deconfinement transition,through a mapping into the 2D Ising model. In particular, we consider the finite-size scaling behavior of the plaquette operator, which can be mapped into the energy operator of the 2D Ising model. We obtain exact predictions for the dependence of the plaquette expectation value on the size and shape of the lattice and we compare them to Monte Carlo results, finding complete agreement. We discuss the application of this method to the computation of more general correlators of the plaquette operator at criticality, and its relevance to the study of the color flux tube structure.Comment: 10 pages, LaTeX file + 3 eps figure

    Critical behaviour and scaling functions of the three-dimensional O(6) model

    Full text link
    We numerically investigate the three-dimensional O(6) model on 12^3 to 120^3 lattices within the critical region at zero magnetic field, as well as at finite magnetic field on the critical isotherm and for several fixed couplings in the broken and the symmetric phase. We obtain from the Binder cumulant at vanishing magnetic field the critical coupling J_c=1.42865(3). The universal value of the Binder cumulant at this point is g_r(J_c)=-1.94456(10). At the critical coupling, the critical exponents \gamma=1.604(6), \beta=0.425(2) and \nu=0.818(5) are determined from a finite-size-scaling analysis. Furthermore, we verify predicted effects induced by massless Goldstone modes in the broken phase. The results are well described by the perturbative form of the model's equation of state. Our O(6)-result is compared to the corresponding Ising, O(2) and O(4) scaling functions. Finally, we study the finite-size-scaling behaviour of the magnetisation on the pseudocritical line.Comment: 13 pages, 20 figures, REVTEX, fixed an error in the determination of R_\chi and changed the corresponding line in figure 13

    The non-zero baryon number formulation of QCD

    Get PDF
    We discuss the non-zero baryon number formulation of QCD in the quenched limit at finite temperature. This describes the thermodynamics of gluons in the background of static quark sources. Although a sign problem remains in this theory, our simulation results show that it can be handled quite well numerically. The transition region gets shifted to smaller temperatures and the transition region broadens with increasing baryon number. Although the action is in our formulation explicitly Z(3) symmetric the Polyakov loop expectation value becomes non-zero already in the low temperature phase and the heavy quark potential gets screened at non-vanishing number density already this phase.Comment: LATTICE99(Finite Temperature and Density), Latex2e using espcrc2.sty, 3 pages, 7 figure

    Improved Actions for QCD Thermodynamics on the Lattice

    Get PDF
    Finite cut-off effects strongly influence the thermodynamics of lattice regularized QCD at high temperature in the standard Wilson formulation. We analyze the reduction of finite cut-off effects in formulations of the thermodynamics of SU(N)SU(N) gauge theories with three different O(a2)O(a^2) and O(a4)O(a^4) improved actions. We calculate the energy density and pressure on finite lattices in leading order weak coupling perturbation theory (TT\rightarrow \infty) and perform Monte Carlo simulations with improved SU(3)SU(3) actions at non-zero g2g^2. Already on lattices with temporal extent Nτ=4N_\tau=4 we find a strong reduction of finite cut-off effects in the high temperature limit, which persists also down to temperatures a few times the deconfinement transition temperature.Comment: 20 pages, 3 Postscript figure

    Thermodynamics of Four-Flavour QCD with Improved Staggered Fermions

    Get PDF
    We have calculated the pressure and energy density in four-flavour QCD using improved fermion and gauge actions. We observe a strong reduction of finite cut-off effects in the high temperature regime, similar to what has been noted before for the SU(3) gauge theory. Calculations have been performed on 163×416^3\times 4 and 16^4 lattices for two values of the quark mass, ma=0.05ma = 0.05 and 0.1. A calculation of the string tension at zero temperature yields a critical temperature Tc/σ=0.407±0.010T_c/\sqrt{\sigma} = 0.407 \pm 0.010 for the smaller quark mass value.Comment: 12 pages, LaTeX2e File, 11 encapsulated postscript file
    corecore