2,738 research outputs found

    Investigation of the D and E regions of the ionosphere

    Get PDF
    Details of an experimental program that investigates the ionosphere using sounding rockets are presented. The investigation is part of a continuing program to gather data on the D and E regions of the ionosphere during periods of recurring natural phenomena that influence these regions. To achieve these ends, four vehicles were launched during the eclipse of the sun on March 7, 1970. Other vehicles totalling 10 in all were launched to investigate transient phenomena such as the sporadic E layer

    Viral and Cellular Requirements for the Nuclear Entry of Retroviral Preintegration Nucleoprotein Complexes

    Get PDF
    Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein

    HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases

    Get PDF
    AbstractMammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells

    A phase Ib/II study of cabozantinib (XL184) with or without erlotinib in patients with non-small cell lung cancer.

    Get PDF
    PurposeCabozantinib is a multi-kinase inhibitor that targets MET, AXL, and VEGFR2, and may synergize with EGFR inhibition in NSCLC. Cabozantinib was assessed alone or in combination with erlotinib in patients with progressive NSCLC and EGFR mutations who had previously received erlotinib.MethodsThis was a phase Ib/II study (NCT00596648). The primary objectives of phase I were to assess the safety, pharmacokinetics, and pharmacodynamics and to determine maximum tolerated dose (MTD) of cabozantinib plus erlotinib in patients who failed prior erlotinib treatment. In phase II, patients with prior response or stable disease with erlotinib who progressed were randomized to single-agent cabozantinib 100 mg qd vs cabozantinib 100 mg qd and erlotinib 50 mg qd (phase I MTD), with a primary objective of estimating objective response rate (ORR).ResultsSixty-four patients were treated in phase I. Doses of 100 mg cabozantinib plus 50 mg erlotinib, or 40 mg cabozantinib plus 150 mg erlotinib were determined to be MTDs. Diarrhea was the most frequent dose-limiting toxicity and the most frequent AE (87.5% of patients). The ORR for phase I was 8.2% (90% CI 3.3-16.5). In phase II, one patient in the cabozantinib arm (N = 15) experienced a partial response, for an ORR of 6.7% (90% CI 0.3-27.9), with no responses for cabozantinib plus erlotinib (N = 13). There was no evidence that co-administration of cabozantinib markedly altered erlotinib pharmacokinetics or vice versa.ConclusionsDespite responses with cabozantinib/erlotinib in phase I, there were no responses in the combination arm of phase II in patients with acquired resistance to erlotinib. Cabozantinib did not appear to re-sensitize these patients to erlotinib

    Targeting Diseased Tissues by pHLIP Insertion at Low Cell Surface pH

    Get PDF
    The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions

    pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents

    Get PDF
    Here we review a novel class of delivery vehicles based on pH-sensitive, moderately polar membrane peptides, which we call pH (Low) Insertion Peptides (pHLIPs), that target cells located in the acidic environment found in many diseased tissues, including tumours. Acidity targeting by pHLIPs is achieved as a result of helix formation and transmembrane insertion. In contrast to the earlier technologies based on cell-penetrating peptides, pHLIPs act as monomeric membrane-inserting peptides that translocate one terminus across a membrane into the cytoplasm, while the other terminus remains in the extracellular space, locating the peptide in the membrane lipid bilayer. Therefore pHLIP has a dual delivery capability: it can tether cargo molecules or nanoparticles to the surfaces of cells in diseased tissues and/or it can move a cell-impermeable cargo molecule across the membrane into the cytoplasm. The source of energy for moving polar molecules attached to pHLIP through the hydrophobic layer of a membrane bilayer is the membrane-associated folding of the polypeptide. A drop in pH leads to the protonation of negatively charged residues (Asp or Glu), which enhances peptide hydrophobicity, increasing the affinity of the peptide for the lipid bilayer and triggering peptide folding and subsequent membrane insertion. The process is accompanied by the release of energy that can be utilized to move cell-impermeable cargo across a membrane. That the mechanism is now understood, and that targeting of tumours in mice has been shown, suggest a number of future applications of the pHLIP technology in the diagnosis and treatment of disease

    Genome-wide association studies using single-nucleotide polymorphisms versus haplotypes: an empirical comparison with data from the North American Rheumatoid Arthritis Consortium

    Get PDF
    The high genomic density of the single-nucleotide polymorphism (SNP) sets that are typically surveyed in genome-wide association studies (GWAS) now allows the application of haplotype-based methods. Although the choice of haplotype-based vs. individual-SNP approaches is expected to affect the results of association studies, few empirical comparisons of method performance have been reported on the genome-wide scale in the same set of individuals. To measure the relative ability of the two strategies to detect associations, we used a large dataset from the North American Rheumatoid Arthritis Consortium to: 1) partition the genome into haplotype blocks, 2) associate haplotypes with disease, and 3) compare the results with individual-SNP association mapping. Although some associations were shared across methods, each approach uniquely identified several strong candidate regions. Our results suggest that the application of both haplotype-based and individual-SNP testing to GWAS should be adopted as a routine procedure

    Engineered Hyperactive Integrase for Concerted HIV-1 DNA Integration

    Get PDF
    The DNA cutting and joining reactions of HIV-1 integration are catalyzed by integrase (IN), a viral protein that functions as a tetramer bridging the two viral DNA ends (intasome). Two major obstacles for biochemical and structural studies of HIV-1 intasomes are 1) the low efficiency of assembly with oligonucleotide DNA substrates, and 2) the non-specific aggregation of both intasomes and free IN in the reaction mixture. By fusing IN with a small non-specific DNA binding protein, Sulfolobus solfataricus chromosomal protein Sso7d (PDB: 1BNZ), we have engineered a highly soluble and hyperactive IN. Unlike wild-type IN, it efficiently catalyzes intasome assembly and concerted integration with oligonucleotide DNA substrates. The fusion IN protein also functions to integrate viral reverse transcripts during HIV-infection. The hyperactive HIV-1 IN may assist in facilitating future biochemical and structural studies of HIV-1 intasomes. Understanding the mechanistic basis of the Sso7d-IN fusion protein could provide insight into the factors that have hindered biophysical studies of wild-type HIV-1 IN and intasomes
    • …
    corecore