437 research outputs found
Complete partial metric spaces have partially metrizable computational models
We show that the domain of formal balls of a complete partial metric space (X, p) can be endowed with a complete partial metric that extends p and induces the Scott topology. This result, that generalizes well-known constructions of Edalat and Heckmann [A computational model for metric spaces, Theoret. Comput. Sci. 193 (1998), pp. 53-73] and Heckmann [Approximation of metric spaces by partial metric spaces, Appl. Cat. Struct. 7 (1999), pp. 71-83] for metric spaces and improves a recent result of Romaguera and Valero [A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. Comput. Sci. 19 (2009), pp. 541-563], motivates a notion of a partially metrizable computational model which allows us to characterize those topological spaces that admit a compatible complete partial metric via this model.The authors acknowledge the support of the Spanish Ministry of Science and Innovation, under grant MTM2009-12872-C02-01.Romaguera Bonilla, S.; Tirado Peláez, P.; Valero Sierra, Ó. (2012). Complete partial metric spaces have partially metrizable computational models. International Journal of Computer Mathematics. 89(3):284-290. https://doi.org/10.1080/00207160.2011.559229S284290893ALI-AKBARI, M., HONARI, B., POURMAHDIAN, M., & REZAII, M. M. (2009). The space of formal balls and models of quasi-metric spaces. Mathematical Structures in Computer Science, 19(2), 337-355. doi:10.1017/s0960129509007439Edalat, A., & Heckmann, R. (1998). A computational model for metric spaces. Theoretical Computer Science, 193(1-2), 53-73. doi:10.1016/s0304-3975(96)00243-5Edalat, A., & Sünderhauf, P. (1999). Computable Banach spaces via domain theory. Theoretical Computer Science, 219(1-2), 169-184. doi:10.1016/s0304-3975(98)00288-6Flagg, B., & Kopperman, R. (1997). Computational Models for Ultrametric Spaces. Electronic Notes in Theoretical Computer Science, 6, 151-159. doi:10.1016/s1571-0661(05)80164-1Heckmann, R. (1999). Applied Categorical Structures, 7(1/2), 71-83. doi:10.1023/a:1008684018933Kopperman, R., Künzi, H.-P. A., & Waszkiewicz, P. (2004). Bounded complete models of topological spaces. Topology and its Applications, 139(1-3), 285-297. doi:10.1016/j.topol.2003.12.001Krötzsch, M. (2006). Generalized ultrametric spaces in quantitative domain theory. Theoretical Computer Science, 368(1-2), 30-49. doi:10.1016/j.tcs.2006.05.037Künzi, H.-P. A. (2001). Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology. History of Topology, 853-968. doi:10.1007/978-94-017-0470-0_3LAWSON, J. (1997). Spaces of maximal points. Mathematical Structures in Computer Science, 7(5), 543-555. doi:10.1017/s0960129597002363Martin, K. (1998). Domain theoretic models of topological spaces. Electronic Notes in Theoretical Computer Science, 13, 173-181. doi:10.1016/s1571-0661(05)80221-xMatthews, S. G.Partial metric topology. Procedings of the 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), pp. 183–197Rodríguez-López, J., Romaguera, S., & Valero, O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics, 85(3-4), 623-630. doi:10.1080/00207160701210653Romaguera, S., & Valero, O. (2009). A quasi-metric computational model from modular functions on monoids. International Journal of Computer Mathematics, 86(10-11), 1668-1677. doi:10.1080/00207160802691652ROMAGUERA, S., & VALERO, O. (2009). A quantitative computational model for complete partial metric spaces via formal balls. Mathematical Structures in Computer Science, 19(3), 541-563. doi:10.1017/s0960129509007671ROMAGUERA, S., & VALERO, O. (2010). Domain theoretic characterisations of quasi-metric completeness in terms of formal balls. Mathematical Structures in Computer Science, 20(3), 453-472. doi:10.1017/s0960129510000010Rutten, J. J. M. M. (1998). Weighted colimits and formal balls in generalized metric spaces. Topology and its Applications, 89(1-2), 179-202. doi:10.1016/s0166-8641(97)00224-1Schellekens, M. P. (2003). A characterization of partial metrizability: domains are quantifiable. Theoretical Computer Science, 305(1-3), 409-432. doi:10.1016/s0304-3975(02)00705-3Smyth, M. B. (2006). The constructive maximal point space and partial metrizability. Annals of Pure and Applied Logic, 137(1-3), 360-379. doi:10.1016/j.apal.2005.05.032Waszkiewicz, P. (2003). Applied Categorical Structures, 11(1), 41-67. doi:10.1023/a:1023012924892WASZKIEWICZ, P. (2006). Partial metrisability of continuous posets. Mathematical Structures in Computer Science, 16(02), 359. doi:10.1017/s096012950600519
A decomposition theorem for BV functions
The Jordan decomposition states that a function f: R \u2192 R is of bounded variation if and only if it can be written as the dierence of two monotone increasing functions. In this paper we generalize this property to real valued BV functions of many variables, extending naturally the concept of monotone function. Our result is an extension of a result obtained by Alberti, Bianchini and Crippa. A counterexample is given which prevents further extensions
Proving The Ergodic Hypothesis for Billiards With Disjoint Cylindric Scatterers
In this paper we study the ergodic properties of mathematical billiards
describing the uniform motion of a point in a flat torus from which finitely
many, pairwise disjoint, tubular neighborhoods of translated subtori (the so
called cylindric scatterers) have been removed. We prove that every such system
is ergodic (actually, a Bernoulli flow), unless a simple geometric obstacle for
the ergodicity is present.Comment: 24 pages, AMS-TeX fil
On linearly ordered -closed topological semilattices
We give a criterium when a linearly ordered topological semilattice is
-closed. We also prove that any linearly ordered -closed topological
semilattice is absolutely -closed and we show that every linearly ordered
semilattice is a dense subsemilattice of an -closed topological semilattice
On chains in -closed topological pospaces
We study chains in an -closed topological partially ordered space. We give
sufficient conditions for a maximal chain in an -closed topological
partially ordered space such that contains a maximal (minimal) element.
Also we give sufficient conditions for a linearly ordered topological partially
ordered space to be -closed. We prove that any -closed topological
semilattice contains a zero. We show that a linearly ordered -closed
topological semilattice is an -closed topological pospace and show that in
the general case this is not true. We construct an example an -closed
topological pospace with a non--closed maximal chain and give sufficient
conditions that a maximal chain of an -closed topological pospace is an
-closed topological pospace.Comment: We have rewritten and substantially expanded the manuscrip
Bounded and unitary elements in pro-C^*-algebras
A pro-C^*-algebra is a (projective) limit of C^*-algebras in the category of
topological *-algebras. From the perspective of non-commutative geometry,
pro-C^*-algebras can be seen as non-commutative k-spaces. An element of a
pro-C^*-algebra is bounded if there is a uniform bound for the norm of its
images under any continuous *-homomorphism into a C^*-algebra. The *-subalgebra
consisting of the bounded elements turns out to be a C^*-algebra. In this
paper, we investigate pro-C^*-algebras from a categorical point of view. We
study the functor (-)_b that assigns to a pro-C^*-algebra the C^*-algebra of
its bounded elements, which is the dual of the Stone-\v{C}ech-compactification.
We show that (-)_b is a coreflector, and it preserves exact sequences. A
generalization of the Gelfand-duality for commutative unital pro-C^*-algebras
is also presented.Comment: v2 (accepted
Functions of several Cayley-Dickson variables and manifolds over them
Functions of several octonion variables are investigated and integral
representation theorems for them are proved. With the help of them solutions of
the -equations are studied. More generally functions of
several Cayley-Dickson variables are considered. Integral formulas of the
Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are
proved in the new generalized form for functions of Cayley-Dickson variables
instead of complex. Moreover, analogs of Stein manifolds over Cayley-Dickson
graded algebras are defined and investigated
Robots That Do Not Avoid Obstacles
The motion planning problem is a fundamental problem in robotics, so that
every autonomous robot should be able to deal with it. A number of solutions
have been proposed and a probabilistic one seems to be quite reasonable.
However, here we propose a more adoptive solution that uses fuzzy set theory
and we expose this solution next to a sort survey on the recent theory of soft
robots, for a future qualitative comparison between the two.Comment: To appear in the Handbook of Nonlinear Analysis, Edt Th. Rassias,
Springe
On extending actions of groups
Problems of dense and closed extension of actions of compact transformation
groups are solved. The method developed in the paper is applied to problems of
extension of equivariant maps and of construction of equivariant
compactifications
Normal families of functions and groups of pseudoconformal diffeomorphisms of quaternion and octonion variables
This paper is devoted to the specific class of pseudoconformal mappings of
quaternion and octonion variables. Normal families of functions are defined and
investigated. Four criteria of a family being normal are proven. Then groups of
pseudoconformal diffeomorphisms of quaternion and octonion manifolds are
investigated. It is proven, that they are finite dimensional Lie groups for
compact manifolds. Their examples are given. Many charactersitic features are
found in comparison with commutative geometry over or .Comment: 55 pages, 53 reference
- …