This paper is devoted to the specific class of pseudoconformal mappings of
quaternion and octonion variables. Normal families of functions are defined and
investigated. Four criteria of a family being normal are proven. Then groups of
pseudoconformal diffeomorphisms of quaternion and octonion manifolds are
investigated. It is proven, that they are finite dimensional Lie groups for
compact manifolds. Their examples are given. Many charactersitic features are
found in comparison with commutative geometry over R or C.Comment: 55 pages, 53 reference