7 research outputs found
Impact of protocolâbased physiotherapy on insulin sensitivity and peripheral glucose metabolism in critically ill patients
Background: The impact of physiotherapy on insulin sensitivity and peripheral glucose metabolism in critically ill patients is not well understood.
Methods: This pooled analysis investigates the impact of different physiotherapeutic strategies on insulin sensitivity in critically ill patients. We pooled data from two previous trials in adult patients with sequential organ failure assessment score (SOFA)>= 9 within 72 h of intensive care unit (ICU) admission, who received hyperinsulinaemic euglycaemic (HE) clamps. Patients were divided into three groups: standard physiotherapy (sPT, n = 22), protocol-based physiotherapy (pPT, n = 8), and pPT with added muscle activating measures (pPT+, n = 20). Insulin sensitivity index (ISI) was determined by HE clamp. Muscle metabolites lactate, pyruvate, and glycerol were measured in the M. vastus lateralis via microdialysis during the HE clamp. Histochemical visualization of glucose transporter-4 (GLUT4) translocation was performed in surgically extracted muscle biopsies. All data are reported as median (25th/75th percentile) (trial registry: ISRCTN77569430 and ISRCTN19392591/ethics approval: Charite-EA2/061/06 and Charite-EA2/041/10). Results Fifty critically ill patients (admission SOFA 13) showed markedly decreased ISIs on Day 17 (interquartile range) 0.029 (0.022/0.048) (mg/min/kg)/(mU/L) compared with healthy controls 0.103 (0.087/0.111), P < 0.001. ISI correlated with muscle strength measured by medical research council (MRC) score at first awakening (r = 0.383, P = 0.026) and at ICU discharge (r = 0.503, P = 0.002). Different physiotherapeutic strategies showed no effect on the ISI [sPT 0.029 (0.019/0.053) (mg/min/kg)/(mU/L) vs. pPT 0.026 (0.023/0.041) (mg/min/kg)/(mU/L) vs. pPT+ 0.029 (0.023/0.042) (mg/min/kg)/(mU/L); P = 0.919]. Regardless of the physiotherapeutic strategy metabolic flexibility was reduced. Relative change of lactate/pyruvate ratio during HE clamp is as follows: sPT 0.09 (-0.13/0.27) vs. pPT 0.07 (-0.16/0.31) vs. pPT+ -0.06 (-0.19/0.16), P = 0.729, and relative change of glycerol concentration: sPT -0.39 (-0.8/-0.12) vs. pPT -0.21 (-0.33/0.07) vs. pPT+ -0.21 (-0.44/-0.03), P = 0.257. The majority of ICU patients showed abnormal localization of GLUT4 with membranous GLUT4 distribution in 37.5% (3 of 8) of ICU patients receiving sPT, in 42.9% (3 of 7) of ICU patients receiving pPT, and in 53.8% (7 of 13) of ICU patients receiving pPT+ (no statistical testing possible).
Conclusions: Our data suggest that a higher duration of muscle activating measures had no impact on insulin sensitivity or metabolic flexibility in critically ill patients with sepsis-related multiple organ failure
Association between potassium concentrations, variability and supplementation, and inâhospital mortality in ICU patients: a retrospective analysis
BACKGROUND:
Serum potassium concentrations are commonly between 3.5 and 5.0 mmol/l. Standardised protocols for potassium range and supplementation in the ICU are lacking. The purpose of this retrospective analysis of ICU patients was to investigate potassium concentrations, variability and supplementation, and their association with in-hospital mortality.
METHODS:
ICU patients â„â18 years, with â„â2 serum potassium values, treated at the CharitĂ© - UniversitĂ€tsmedizin Berlin between 2006 and 2018 were eligible for inclusion. We categorised into groups of mean potassium concentrations:ââ3.5-4.0, >â4.0-4.5, >â4.5-5.0, >â5.0-5.5, >â5.5 mmol/l and potassium variability: 1st, 2nd and â„â3rd standard deviation (SD). We analysed the association between the particular groups and in-hospital mortality and performed binary logistic regression analysis. Survival curves were performed according to Kaplan-Meier and tested by Log-Rank. In a subanalysis, the association between potassium supplementation and in-hospital mortality was investigated.
RESULTS:
In 53,248 ICU patients with 1,337,742 potassium values, the lowest mortality (3.7%) was observed in patients with mean potassium concentrations betweenâ>â3.5 and 4.0 mmol/l and a low potassium variability within the 1st SD. Binary logistic regression confirmed these results. In a subanalysis of 22,406 ICU patients (ICU admission: 2013-2018), 12,892 (57.5%) received oral and/or intravenous potassium supplementation. Potassium supplementation was associated with an increase in in-hospital mortality in potassium categories fromâ>â3.5 to 4.5 mmol/l and in the 1st, 2nd and â„â3rd SD (pâ<â0.001 each).
CONCLUSIONS:
ICU patients may benefit from a target range between 3.5 and 4.0 mmol/l and a minimal potassium variability. Clear potassium target ranges have to be determined. Criteria for widely applied potassium supplementation should be critically discussed. Trial registration German Clinical Trials Register, DRKS00016411. Retrospectively registered 11 January 2019, http://www.drks.de/DRKS00016411
Muscular myostatin gene expression and plasma concentrations are decreased in critically ill patients.
BACKGROUND
The objective was to investigate the role of gene expression and plasma levels of the muscular protein myostatin in intensive care unit-acquired weakness (ICUAW). This was performed to evaluate a potential clinical and/or pathophysiological rationale of therapeutic myostatin inhibition.
METHODS
A retrospective analysis from pooled data of two prospective studies to assess the dynamics of myostatin plasma concentrations (day 4, 8 and 14) and myostatin gene (MSTN) expression levels in skeletal muscle (day 15) was performed. Associations of myostatin to clinical and electrophysiological outcomes, muscular metabolism and muscular atrophy pathways were investigated.
RESULTS
MSTN gene expression (median [IQR] fold change: 1.00Â [0.68-1.54] vs. 0.26Â [0.11-0.80]; pâ=â0.004) and myostatin plasma concentrations were significantly reduced in all critically ill patients when compared to healthy controls. In critically ill patients, myostatin plasma concentrations increased over time (median [IQR] fold change: day 4: 0.13 [0.08/0.21] vs. day 8: 0.23 [0.10/0.43] vs. day 14: 0.40 [0.26/0.61]; pâ<â0.001). Patients with ICUAW versus without ICUAW showed significantly lower MSTN gene expression levels (median [IQR] fold change: 0.17 [0.10/0.33] and 0.51 [0.20/0.86]; pâ=â0.047). Myostatin levels were directly correlated with muscle strength (correlation coefficient 0.339; pâ=â0.020) and insulin sensitivity index (correlation coefficient 0.357; pâ=â0.015). No association was observed between myostatin plasma concentrations as well as MSTN expression levels and levels of mobilization, electrophysiological variables, or markers of atrophy pathways.
CONCLUSION
Muscular gene expression and systemic protein levels of myostatin are downregulated during critical illness. The previously proposed therapeutic inhibition of myostatin does therefore not seem to have a pathophysiological rationale to improve muscle quality in critically ill patients.
TRIAL REGISTRATION
ISRCTN77569430 -13th of February 2008 and ISRCTN19392591 17th of February 2011
A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing
Purpose
Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the âClinVar low-hanging fruitâ reanalysis, reasons for the failure of previous analyses, and lessons learned.
Methods
Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted.
Results
We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency).
Conclusion
The âClinVar low-hanging fruitâ analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness
(1) Background: Female sex is considered a risk factor for Intensive Care Unit-Acquired Weakness (ICUAW). The aim is to investigate sex-specific aspects of skeletal muscle metabolism in the context of ICUAW. (2) Methods: This is a sex-specific sub-analysis from two prospectively conducted trials examining skeletal muscle metabolism and advanced muscle activating measures in critical illness. Muscle strength was assessed by Medical Research Council Score. The insulin sensitivity index was analyzed by hyperinsulinemic-euglycemic (HE) clamp. Muscular metabolites were studied by microdialysis. M. vastus lateralis biopsies were taken. The molecular analysis included protein degradation pathways. Morphology was assessed by myocyte cross-sectional area (MCSA). Multivariable linear regression models for the effect of sex on outcome parameters were performed. (3) Results: n = 83 (♂n = 57, 68.7%; ♀n = 26, 31.3%) ICU patients were included. ICUAW was present in 81.1%♂ and in 82.4%♀ at first awakening (p = 0.911) and in 59.5%♂ and in 70.6%♀ at ICU discharge (p = 0.432). Insulin sensitivity index was reduced more in women than in men (p = 0.026). Sex was significantly associated with insulin sensitivity index and MCSA of Type IIa fibers in the adjusted regression models. (4) Conclusion: This hypothesis-generating analysis suggests that more pronounced impairments in insulin sensitivity and lower MCSA of Type IIa fibers in critically ill women may be relevant for sex differences in ICUAW
Correction: Engelhardt et al. Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness. <i>J. Clin. Med</i>. 2022, <i>11</i>, 846
Due to an Editorial Office error during processing, a number of male and female symbols were incorrectly shown in the pdf version of the manuscript [...
The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica