BACKGROUND:
Serum potassium concentrations are commonly between 3.5 and 5.0 mmol/l. Standardised protocols for potassium range and supplementation in the ICU are lacking. The purpose of this retrospective analysis of ICU patients was to investigate potassium concentrations, variability and supplementation, and their association with in-hospital mortality.
METHODS:
ICU patients ≥ 18 years, with ≥ 2 serum potassium values, treated at the Charité - Universitätsmedizin Berlin between 2006 and 2018 were eligible for inclusion. We categorised into groups of mean potassium concentrations: 3.5-4.0, > 4.0-4.5, > 4.5-5.0, > 5.0-5.5, > 5.5 mmol/l and potassium variability: 1st, 2nd and ≥ 3rd standard deviation (SD). We analysed the association between the particular groups and in-hospital mortality and performed binary logistic regression analysis. Survival curves were performed according to Kaplan-Meier and tested by Log-Rank. In a subanalysis, the association between potassium supplementation and in-hospital mortality was investigated.
RESULTS:
In 53,248 ICU patients with 1,337,742 potassium values, the lowest mortality (3.7%) was observed in patients with mean potassium concentrations between > 3.5 and 4.0 mmol/l and a low potassium variability within the 1st SD. Binary logistic regression confirmed these results. In a subanalysis of 22,406 ICU patients (ICU admission: 2013-2018), 12,892 (57.5%) received oral and/or intravenous potassium supplementation. Potassium supplementation was associated with an increase in in-hospital mortality in potassium categories from > 3.5 to 4.5 mmol/l and in the 1st, 2nd and ≥ 3rd SD (p < 0.001 each).
CONCLUSIONS:
ICU patients may benefit from a target range between 3.5 and 4.0 mmol/l and a minimal potassium variability. Clear potassium target ranges have to be determined. Criteria for widely applied potassium supplementation should be critically discussed. Trial registration German Clinical Trials Register, DRKS00016411. Retrospectively registered 11 January 2019, http://www.drks.de/DRKS00016411