135 research outputs found
Historical Arctic Logbooks Provide Insights into Past Diets and Climatic Responses of Cod
Gadus morhua (Atlantic cod) stocks in the Barents Sea are currently at levels not seen since the 1950s. Causes for the population increase last century, and understanding of whether such large numbers will be maintained in the future, are unclear. To explore this, we digitised and interrogated historical cod catch and diet datasets from the Barents Sea. Seventeen years of catch data and 12 years of prey data spanning 1930–1959 cover unexplored spatial and temporal ranges, and importantly capture the end of a previous warm period, when temperatures were similar to those currently being experienced. This study aimed to evaluate cod catch per unit effort and prey frequency in relation to spatial, temporal and environmental variables. There was substantial spatio-temporal heterogeneity in catches through the time series. The highest catches were generally in the 1930s and 1940s, although at some localities more cod were recorded late in the 1950s. Generalized Additive Models showed that environmental, spatial and temporal variables are all valuable descriptors of cod catches, with the highest occurring from 15–45°E longitude and 73–77°N latitude, at bottom temperatures between 2 and 4°C and at depths between 150 and 250 m. Cod diets were highly variable during the study period, with frequent changes in the relative frequencies of different prey species, particularly Mallotus villosus (capelin). Environmental variables were particularly good at describing the importance of capelin and Clupea harengus (herring) in the diet. These new analyses support existing knowledge about how the ecology of the region is controlled by climatic variability. When viewed in combination with more recent data, these historical relationships will be valuable in forecasting the future of Barents Sea fisheries, and in understanding how environments and ecosystems may respond
Reconstructing three decades of total international trawling effort in the North Sea
Fishing – especially trawling – is one of the most ubiquitous anthropogenic pressures on marine ecosystems worldwide, yet very few long-term, spatially explicit datasets on trawling effort exist; this greatly hampers our understanding of the medium- to long-term impact of trawling. This important gap is addressed here for the North Sea, a highly productive shelf sea which is also subject to many anthropogenic pressures. For a 31-year time span (1985–2015), we provide a gridded dataset of the spatial distribution of total international otter and beam trawling effort, with a resolution of 0.5∘ latitude by 1∘ longitude, over the North Sea. The dataset was largely reconstructed using compiled effort data from seven fishing effort time series, each covering shorter time spans and only some of the countries fishing the North Sea. For the years where effort data for particular countries were missing, the series was complemented using estimated (modelled) effort data. This new, long-term and large-scale trawling dataset may serve the wider scientific community, as well as those involved with policy and management, as a valuable information source on fishing pressure in a large marine ecosystem which is heavily impacted but which simultaneously provides a wealth of ecosystem services to society. The dataset is available on the Cefas Data Hub at: https://doi.org/10.14466/CefasDataHub.61, version 2 (Couce et al., 2019)
Trawling through time : reconstructing a late nineteenth century beam trawl for scientific inshore fishery investigations
We sincerely thank Neil Armstrong and Barry Pearson, skippers of the R.V The Princess Royal , for their expertise in trawl technology and assistance in conducting gear trials at sea. The study greatly benefited from expertise and logistical input from numerous industry stakeholders, including staff and volunteers at Blyth Tall Ship, Darren Edwards at Brixham Trawl Makers, J.W Colpitts & Co, and John Wylson at the Excelsior Trust. We would also like to thank Nigel Gray of Blyth Tall Ships for constructive advice and discussions throughout the entire gear reconstruction process. Thanks to Jock Currie for sharing knowledge, information, and first-hand experience of historical trawl gears. We would also like to acknowledge the funders listed under the Funding section.Peer reviewe
Long-term change in a North Sea inshore fish assemblage between 1899-1913 and 2018-2019
GLH was supported by a Newcastle University SAgE DTA studentship with additional funding to GHE and JKP from a Cefas Seedcorn grant (DP371T). Special thanks to Neil Armstrong and Barry Pearson, skippers of the RV The Princess Royal, for their assistance in collecting fish samples at sea. We also thank Imogen Dent for her help processing samples at sea. We would also like to thank Alex Aitken at Northumberland Inshore Fisheries Conservation Authority (NIFCA) who gave input on management measures and byelaws for the study region. We are also grateful for the constructive comments provided by the anonymous reviewers.Peer reviewe
Socio-economic Impacts—Fisheries
Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly
Assessing the risk of climate change to aquaculture: a national-scale case study for the Sultanate of Oman
Aquaculture is expanding globally and is an increasingly important component of world food security. However, climate change can impact aquaculture through a variety of mechanisms varying by location and aquaculture type with implications for future productivity. Understanding the risks that climate change poses on different culture systems in different locations is important to enable the design of targeted adaptation and resilience building actions. Here we present an aquaculture climate risk assessment framework, applied to the aquaculture sector of the Sultanate of Oman, that identifies the sensitivity and exposure of different components of the sector to climate change risk. Oman has aspirations to significantly expand aquaculture over the next decade focussing on coastal shrimp ponds, finfish sea cages, land-based recirculating aquaculture systems, and ponds and raceways. We quantify overall climate risk as the combination of four risks: (1) species’ temperature sensitivity, (2) flooding and storm surge exposure, (3) low-oxygen hazard and (4) disease vulnerability. Shrimp culture is identified as highest risk due to high exposure of shrimp ponds to flooding and storm surges, and high disease vulnerability. Seabream cage farming also faces high risk due to high thermal sensitivity and high potential of low-oxygen levels affecting sea cages. Following the risk assessment a stakeholder workshop was conducted to identify targeted adaptation measures for the different components of the sector. The framework for assessing climate risk to aquaculture demonstrated here is equally applicable at the regional, national or sub-national scale to support design of targeted resilience building actions and enhance food security
Effort reduction and the large fish indicator: Spatial trends reveal positive impacts of recent European fleet reduction schemes
The large fish indicator (LFI), or ‘proportion of fish greater than 40 cm length in bottom trawl surveys,’ is a frequently debated indicator of Good Environmental Status in European regional seas. How does the LFI respond to changes in fishing pressure? This question is addressed here through analysis of fine-scale spatial trends in the LFI within the North Sea, compared between two periods of contrasting fisheries management: 1983–1999 and 2000–2012, respectively, before and after the onset of the European Union's fleet reduction scheme. Over the entire period, the LFI has decreased in large parts of the North Sea. However, most of the decline was from 1983–1999; since 2000 the LFI has improved in much of the North Sea, especially in UK waters. Comparison with international effort data shows that those western areas where the LFI has improved correspond with regions where otter trawl effort has decreased since 2000 (and previously was highest in the 1990s), and also with decreases in beam trawl effort. This study provides strong support that recent European effort reduction schemes are now beginning to result in an improved ecosystem state as indicated by the regional-scale improvement in the LFI
Disaster risk in Caribbean fisheries: How vulnerability is shaped and how it can be reduced in Dominica and Antigua and Barbuda
Hurricanes and tropical storms have a substantial and sustained influence on fisheries globally. These threats present particularly significant challenges in Caribbean islands, where fisheries contribute towards economies, food security, and social and cultural identities. Yet, storm impacts on coastal communities and fisheries are a relatively neglected area of disaster risk reduction. In response, this paper reports on a novel application and adaptation of the Pressure and Release model (PAR) focused on Caribbean Island fisheries. The PAR is a wellestablished framework used to understand how vulnerability manifests and to identify appropriate policy and management options to reduce vulnerability and build resilience in the longer-term. This research highlights how this approach can expose underlying social, cultural, and economic factors that can either reduce or exacerbate vulnerability in the Caribbean island fisheries sector following extreme weather events using Dominica and Antigua and Barbuda as case studies. This study combines a literature review compiling data on underlying factors of vulnerability for Caribbean Island fisheries, with in-person interviews with fisheries managers from Dominica, and Antigua and Barbuda. It showcases the utility of the PAR in fisheries-focused recovery, and provides empirical evidence that fisheries play an important role in supporting immediate and medium-term coping and recovery after an extreme storm event. This approach has broader relevance for climate change adaptation as it highlights strategies for building resilience for fisheries-dependent societies
Quantifying spatio-temporal consistency in the trophic ecology of two sympatric flatfishes
Sympatric flatfish predators may partition their resources in coastal environments to reduce competition and maximise foraging efficiency. However, the degree of spatial and temporal consistency in their trophic ecology is not well understood because dietary studies tend to overlook the heterogeneity of consumed prey. Increasing the spatial and temporal scale of dietary analyses can thus help to resolve predator resource use. We applied a stomach content and multi-tissue (liver and muscle) stable isotope (δ13C, δ15N and δ34S) approach to investigate the feeding habits of two co-occurring flatfish predators, common dab (Limanda limanda) and European plaice (Pleuronectes platessa), across four bays on the Northumberland coast (UK) over short (hours), medium (days) and long (months) temporal scales. Stomach content analyses showed spatial consistencies in predator resource use, whereas stable isotope mixing models revealed considerable inter-bay diet variability. Stomach contents also indicated high dietary overlap between L. limanda and P. platessa, while the stable isotope data yielded low to moderate levels of overlap, with cases of complete niche separation. Furthermore, individual specialisation metrics indicated consistently low levels of specialisation among conspecifics over time. We document changes in resource partitioning in space and time, reflecting diet switching in response to local and temporal fluctuations of patchily distributed prey. This study highlights how trophic tracers integrated at multiple temporal and spatial scales (within tens of kilometres) provide a more integrative approach for assessing the trophic ecology of sympatric predators in dynamic environments
Sidney Holt, a giant in the history of fisheries science who focused on the future: his legacy and challenges for present-day marine scientists
Sidney J. Holt (1926–2019) was more than a founding father of quantitative fisheries science, and the man who “helped save the great whales.”
His accomplishments, over a career spanning seven decades, run deeper: he was a champion of reductionism (i.e. able to identify the factors
essential for management) and a systemic thinker who inspired scientists to think critically about marine conservation and management. This
article draws on first-hand experiences with Sidney over the last 15 years, when he regularly collaborated with scholars of the ICES Working
Group on the History of Fish and Fisheries and the Oceans Past Initiative. Four main themes emerged from our reflections on Sidney’s life and
legacy, which constitute ongoing scientific challenges: (1) the suitability of maximum sustainable yield as a target reference point for fisheries
management; (2) the future of marine mammal conservation; (3) successful implementation of ecosystem-based marine management; and
(4) the value of historical perspectives for conservation and management. We consider Sidney’s work across these themes, in which he readily
collaborated, focused on evidence-based solutions, and, where evidence was lacking, he advocated for the “precautionary principle.” We posit
there is much that we, and future generations of scientists, can learn from his example
- …