43 research outputs found

    Variation of foliar silicon concentrations in temperate forbs : effects of soil silicon, phylogeny and habitat

    Get PDF
    Silicon (Si) accumulation is known to alleviate various biotic and abiotic stressors in plants with potential ecological consequences. However, for dicotyledonous plants our understanding of Si variation remains limited. We conducted a comparative experimental study to investigate (1) interspecific variation of foliar Si concentrations across 37 dicotyledonous forbs of temperate grasslands, (2) intraspecific variation in foliar Si concentration in response to soil Si availability, the influence of (3) phylogenetic relatedness, and (4) habitat association to moisture. Foliar Si differed markedly (approx. 70-fold) across the investigated forbs, with some species exhibiting Si accumulation similar to grasses. Foliar Si increased with soil Si availability, but the response varied across species: species with higher Si accumulation capacity showed a stronger response, indicating that they did not actively upregulate Si uptake under low soil Si availability. Foliar Si showed a pronounced phylogenetic signal, i.e., closely related species exhibited more similar foliar Si concentrations than distantly related species. Significant differences in foliar Si concentration within closely related species pairs nevertheless support that active Si uptake and associated high Si concentrations has evolved multiple times in forbs. Foliar Si was not higher in species associated with drier habitats, implying that in dicotyledonous forbs of temperate grasslands high foliar Si is not an adaptive trait to withstand drought. Our results demonstrated considerable inter- and intraspecific variation in foliar Si concentration in temperate forbs. This variation should have pervasive, but so far understudied, ecological consequences for community composition and functioning of temperate grasslands under land-use and climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00442-021-04978-9

    Evaluating grazing response strategies in winter annuals : A multi-trait approach

    Get PDF
    Plants minimize fitness losses through grazing by three fundamental strategies: tolerance, avoidance and escape. Annual species have been traditionally assumed to escape grazing through their short life cycle and seed dormancy; however, their grazing response strategies remain almost unexplored. How traits and their coordination affect species' grazing responses, and whether the generalized grazing model, which posits convergent filtering by grazing and drought, is applicable to this ecologically and economically important species group thus remain unclear. We used a trait-based approach to evaluate grazing response strategies of winter annuals from the Middle East. Across 23 species, we examined the coordination of 16 traits hypothesized to be relevant for grazing responses, and linked them to species' fecundity responses, as proxy for fitness responses, to simulated grazing in controlled conditions, to species' abundance responses to grazing in the field and to species' distribution along a large-scale rainfall gradient. Winter annuals exhibited both grazing escape and to a lesser extent tolerance indicated by (a) independent coordination of escape and tolerance traits, and (b) maintenance of higher fecundity in species with more pronounced escape or tolerance traits under simulated grazing. In the natural habitat, species with a more pronounced escape but not tolerance strategy maintained higher abundance under grazing in dry habitats, indicating convergent favouring of escape by both grazing and drought. However, this finding at the local scale was not mirrored by a strategy shift along a large-scale rainfall gradient. Synthesis. The convergent favouring of escape traits by grazing and drought in annuals is consistent with the generalized grazing model. This model, which has been developed for perennials based on the avoidance strategy, can thus be extended to annuals based on escape, a finding that should facilitate projecting consequences of global change in drylands dominated by annuals. © 2021 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ

    Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings

    Get PDF
    Identifying key traits that can serve as proxies for species drought resistance is crucial for predicting and mitigating the effects of climate change in diverse plant communities. Turgor loss point (πtlp) is a recently emerged trait that has been linked to species distributions across gradients of water availability. However, a direct relationship between πtlp and species ability to survive drought has yet to be established for woody species. Using a manipulative field experiment to quantify species drought resistance (i.e., their survival response to drought), combined with measurements of πtlp for 16 tree species, we show a negative relationship between πtlp and seedling drought resistance. Using long-term forest plot data, we also show that πtlp predicts seedling survival responses to a severe El Niño-related drought, although additional factors are clearly also important. Our study demonstrates that species with lower πtlp exhibit higher survival under both experimental and natural drought. These results provide a missing cornerstone in the assessment of the traits underlying drought resistance in woody species and strengthen πtlp as a proxy for evaluating which species will lose or win under projections of exacerbating drought regimes.National Science Foundation DEB-1464866, DEB-1623775, DEB-184540

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore