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One explanation for the extraordinarily high tree diversity of tropical lowland forests is that it is 24 

maintained by specialized natural enemies such as insect herbivores, which cause distance- and 25 

density-dependent mortality. Insect herbivory could also explain the positive correlation between 26 

tree species richness and rainfall if herbivory increases with rainfall, is higher on locally 27 

abundant versus rare species, and is not limited by predation pressure at wet sites. To test these 28 

predictions, insect herbivory and predation pressure on insect herbivores were quantified across a 29 

neotropical rainfall and tree species richness gradient, and herbivory was investigated in relation 30 

to local tree abundances. Insect herbivory on leaves (folivory) decreased strongly and 31 

significantly with rainfall, while predation pressure was significantly higher at the wetter site. 32 

Herbivores were more likely to attack abundant tree species, but herbivore damage levels were 33 

not related to tree species abundance. Insect folivores might contribute to local tree species 34 

coexistence in our system, but seem unlikely to drive the positive correlation between tree 35 

species richness and rainfall. The unexpected and contrasting patterns of herbivory and predation 36 

we observed support the need for a multi-trophic perspective to understand fully the processes 37 

contributing to diversity and ecosystem functioning. 38 

 39 

Una explicación para la extraordinaria elevada diversidad de los árboles en los bosques 40 

tropicales de tierras bajas es que esta mantenida por enemigos naturales especializados como 41 

insectos herbívoros, los cuales causan mortalidad dependiente a la densidad y a la distancia. La 42 

herbivoría de los insectos podría explicar también la correlación positiva entre la riqueza de 43 

especies arbóreas y la precipitación, si la herbivoría se incrementa con la precipitación, es mayor 44 

en especies con alta abundancia local versus las especies poco comunes, y no está limitado por la 45 

presión de la predación en lugares húmedos. Para comprobar estas predicciones, la herbívora por 46 
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insectos y la presión de la predación en insectos herbívoros fueron cuantificadas, a lo largo de un 47 

gradiente de precipitación neotropical y de riqueza de especies, y a su vez herbivoría fue 48 

relacionada con las abundancias locales de 42 especies arbóreas de enfoque. La herbivoría de 49 

insectos en las hojas (folivoria) decrece considerable y significantemente con la precipitación, 50 

mientras que la presión por predación fue significativamente mayor en el sitio más húmedo. Con 51 

una mayor probabilidad los herbívoros atacaron las especies más abundantes, pero el nivel de 52 

daño por herbivoría no estaba relacionado con la abundancia de las especies arbóreas. En nuestro 53 

sistema, los insectos folívoros podrían contribuir a la coexistencia de las especies de árboles 54 

locales, pero parece improbable llevar a la correlación positiva entre la riqueza de especies y la 55 

precipitación. Los patrones inesperados y opuestos que se observaron de la herbivoría y la 56 

predación apoyan la necesidad de un punto de vista multitrófico para entender completamente el 57 

proceso que contribuye a la diversidad y funcionamiento del ecosistema.  58 

 59 

Key words: community compensatory trend; Janzen-Connell; Panama; precipitation; species 60 

coexistence 61 

 62 

Tweetable abstract: Climate alters herbivory: in wetter rainforests, insects cause less damage 63 

and have higher risk of predation 64 
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TROPICAL TREE SPECIES RICHNESS VARIES ENORMOUSLY ALONG ENVIRONMENTAL GRADIENTS 65 

(Pyke et al. 2001; Leigh et al. 2004; Davidar et al. 2005). Understanding how abiotic and biotic 66 

factors interact in shaping and maintaining gradients in tree species richness, composition, and 67 

ultimately ecosystem functioning is crucial to predict the susceptibility of forests to climate 68 

change and to mitigate socio-economic consequences of forest degradation. 69 

 One of the most prominent large-scale patterns in tropical plant diversity is the tendency 70 

for tree species richness to increase with rainfall and decrease with seasonality (Givnish 1999; 71 

Leigh et al. 2004; Davidar et al. 2005). Enhanced density- and distance-dependent insect 72 

herbivory in less seasonal and more humid forests has been suggested to contribute to this 73 

pattern (Janzen 1970; Connell 1971; Coley & Barone 1996; Leigh et al. 2004; Baltzer & Davies 74 

2012). 75 

 Specialized natural enemies such as insects can reduce the fitness of tree offspring 76 

growing close to conspecific adults, which serve as reservoirs for natural enemies, or at high 77 

conspecific offspring densities, which attract enemies via spatial resource concentration (Janzen 78 

1970; Connell 1971; Root 1973). Conspecific negative density dependence (CNDD) has been 79 

widely documented in tropical forests (Peters 2003; Comita et al. 2010, 2014; Paine et al. 2012; 80 

Bagchi et al. 2014) and is regarded as an important mechanism contributing to the maintenance 81 

of high alpha-diversity in tropical forests (Janzen 1970; Connell 1971; Paine et al. 2012; Bagchi 82 

et al. 2014). 83 

 An increase in insect herbivore pressure with rainfall has been suggested to explain 84 

higher tree species richness in wet than in dry tropical forests (Janzen 1970; Connell 1971; Coley 85 

& Barone 1996; Leigh et al. 2004; Baltzer & Davies 2012). Insect herbivores, as the most 86 

important primary consumers in tropical forests, consume up to ~70 percent of total leaf area 87 
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(Coley & Barone 1996) and have been proposed as major agents of distance- and density-88 

dependent effects on plant species (Leigh et al. 2004; Brenes-Arguedas et al. 2009). Drier and 89 

more seasonal conditions could reduce insect abundance by increasing desiccation risk (Coley & 90 

Barone 1996; Givnish 1999; Connahs et al. 2011) and by causing resource limitation through 91 

decreased plant productivity (Coley & Barone 1996; Leigh et al. 2004; Richards & Coley 2007; 92 

Connahs et al. 2011). The hypothesized tendency for insect abundance to be higher in wetter, 93 

less seasonal forests is likely to translate into higher herbivory. However, empirical evidence is 94 

scarce and contradictory: insect abundance and herbivory have been shown to be higher (Brenes-95 

Arguedas et al. 2009; Rodríguez-Castañeda 2013), lower (Coley & Barone 1996; Leigh et al. 96 

2004; Dirzo & Boege 2008) or similar (Baltzer & Davies 2012) in wet compared to dry tropical 97 

forests. Thus, it remains unclear whether insect herbivore pressure and CNDD do indeed 98 

increase with rainfall, and whether such a trend explains higher plant diversity in wetter tropical 99 

forests. In a recent meta-analysis, the strength of negative density- and distance-dependence was 100 

found to increase with increasing mean annual rainfall, suggesting that CNDD may contribute to 101 

increases in plant diversity along rainfall gradients (Comita et al. 2014). However, the degree to 102 

which this pattern is driven by insect herbivores or other mechanisms (e.g. pathogens, 103 

intraspecific competition) remains unknown. 104 

 The impact of CNDD may vary with the local abundance of tree species. Abundant 105 

species contribute more individuals per unit area, resulting in higher conspecific densities 106 

compared to rare species. Thus, natural enemies should have a higher chance to encounter, attack 107 

and build up populations if interacting with locally abundant species (Root 1973; Castagneyrol et 108 

al. 2014). In contrast, rare species that experience less herbivore damage would profit from a 109 

competitive advantage against abundant species, promoting species coexistence via a community 110 
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compensatory trend (Leigh et al. 2004; Norghauer et al. 2006). In order for insects to contribute 111 

to maintaining the high tree alpha-diversity of tropical forests via CNDD, the impact of insect 112 

herbivory must increase with tree species abundance in a community. 113 

 The effects of insect herbivores on plants can be moderated by their predators, which can 114 

effectively reduce insect herbivore populations (Purcell & Avilés 2008) and herbivory (Mazía et 115 

al. 2004; Stireman et al. 2005; Rodríguez-Castañeda 2013). Top-down control of herbivores has 116 

been suggested to increase from dry to wet tropical forests (Root 1973; Oksanen et al. 1981; 117 

Richards & Coley 2007). Higher plant productivity and species richness in wet, aseasonal forests 118 

may improve the fitness of predators by providing more complementary food and shelter options 119 

(Root 1973; Russell 1989). However, high predation pressure and the resulting lower abundance 120 

of insect herbivores in wetter forests would counter any tendency for more pronounced 121 

herbivore-imposed CNDD to act as a mechanism increasing tree species richness with rainfall. 122 

Despite the long-standing recognition of the impact of predators on herbivory (Coley & Barone 123 

1996), few studies have measured predation pressure across tropical rainfall gradients (Stireman 124 

et al. 2005; Connahs et al. 2011), and we are unaware of studies documenting trends in 125 

herbivory and predation simultaneously across multiple sites. 126 

 Overall, insect herbivory could explain the increase of tree species richness towards 127 

wetter tropical forests, if it increases with rainfall, is higher on locally abundant versus rare 128 

species, and is not limited by predation pressure at wet sites. Working in a network of sites 129 

across a steep gradient of rainfall and tree diversity in Panama, Central America, we quantified 130 

insect herbivory of tree saplings in six natural forest sites in relation to the local abundances of a 131 

total set of 42 focal tree species. At the same time, predation pressure on insect herbivores was 132 

assessed in one dry and one wetter forest along the same gradient. We tested the hypotheses that 133 
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(1) insect herbivory increases with rainfall, (2) insect herbivory increases with local tree and 134 

sapling abundance, and (3) predation pressure remains unchanged with rainfall. 135 

 136 

METHODS 137 

 138 

FIELD SITES. – The study was performed in forests in Central Panama, along a steep rainfall 139 

gradient. Within just 65 km, mean annual rainfall increases from the semi-deciduous forests at 140 

the Pacific side with ~1600 mm/ yr and a pronounced dry season from December to April (~129 141 

d), to the evergreen forests at the Caribbean side with ~ 4000 mm/ yr and a ~ 27 d shorter dry 142 

season (Engelbrecht et al. 2007). Tree richness ranges from 49 to 165 species per forest hectare 143 

along the gradient and is positively correlated with rainfall (Pyke et al. 2001). This study was 144 

conducted in six lowland 1-ha (100x100 m) forest sites, spanning almost the full range of 145 

variation in rainfall and tree species richness (Table 1). Adult trees and large saplings (≥ 1 cm 146 

diameter at breast height, dbh), hereafter referred to as 'trees', were censused throughout each site 147 

(Condit 1998b, this study) and seedlings and small saplings (≥ 20 cm tall and < 1 cm dbh), 148 

hereafter 'saplings', in 400 1x1 m plots per 1-ha site (Comita et al. 2007 for census methods). 149 

Herbivory and predation pressure were assessed between late May and August 2014 during the 150 

rainy season, when insect abundance (Coley & Barone 1996) and predation pressure on insects 151 

(Molleman et al. 2016) is highest. Mean annual rainfall was calculated based on 20 – 80 year 152 

rainfall records in a network of rainfall stations (Steve Paton, pers. comm.).  153 

 154 

FOCAL SPECIES AND PLANT MATERIAL. – We focused on shade-tolerant tree species, which 155 

contribute the majority of species and stems at these sites (Welden et al. 1991), to avoid 156 
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conflicting impacts of plant life history strategies and growth form. Species were selected to 157 

cover a wide range of abundances (based on census data from Condit 1998b and this study). The 158 

very rarest species, often represented by only one individual per hectare, were excluded to allow 159 

replication within sites. Specifically, species were included only if at least three saplings (50-200 160 

cm tall, ≤ 1 cm dbh) could be found in the understory (i.e. excluding tree-fall gaps) of a 1-ha site. 161 

We did not sample saplings located in conspecific clusters, i.e. more than three conspecific 162 

saplings standing in close proximity, to match scales of herbivory and abundance data. With 163 

these criteria, we selected 42 focal species (representing 35 genera, 21 families, and 12 orders; 164 

Table S1), of which some were sampled in more than one site amounting to 56 species-by-site 165 

combinations. Due to rapid species turnover across the gradient (Condit 1998a), focal species 166 

differed among sites. Only one species, Lacistema aggregatum P.J.Bergius (Rusby) 167 

(Malpighiales: Lacistemataceae), could be included in all six sites allowing for assessment of 168 

intraspecific variation in herbivory across the gradient. We measured 5-11 species per site with 169 

3-18 individuals per species (mean 11.54; Table S1), and a total of 680 saplings across all sites. 170 

 171 

HERBIVORY MEASUREMENTS. – We focused on folivory and did not investigate more cryptic 172 

forms of insect herbivory (e.g., stem-boring, root-feeding). Five fully expanded, young, healthy, 173 

shaded and undamaged leaves per sapling were haphazardly chosen and tagged with numbered 174 

aluminum rings around the petioles. We focused on fully expanded leaves because herbivory on 175 

mature leaves can affect seedling survival negatively (Eichhorn et al. 2010). In contrast, plant 176 

mortality has been found to be unaffected by herbivory on young leaves (Eichhorn et al. 2010), 177 

although it is higher than herbivory on mature leaves (Coley & Barone 1996). Leaves with low 178 

levels of previous damage (< 2% of leaf area) were included in cases where too few undamaged 179 
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leaves were found. Prior damage was measured with a millimeter grid. Leaves were collected to 180 

analyze herbivore damage about 50 days after tagging (minimum 46 d, maximum 58 d), 181 

alternating between drier and wetter sites. Missing leaves (3.29 % of all leaves) were not 182 

considered, as the cause of leaf loss could not be determined. Overall, 3209 leaves (3-5 leaves 183 

per sapling, mean 4.7) were collected. 184 

 Herbivory was assessed as the percentage leaf area removed relative to estimated total 185 

leaf area. Brown areas were considered as secondary damage and not included in the herbivory 186 

measurements. No damage of leaf miners or gall formers occurred on the tagged leaves during 187 

our sampling period. Leaves were covered and flattened with non-reflecting glass on a white 188 

background and photographed next to a 1 mm scale with a Nikon Coolpix P5000 camera. 189 

Photographs were analyzed for remaining and estimated total leaf area using ImageJ 1.46r 190 

(Rasband 2006). In the few cases where large parts of the leaf were missing and the original leaf 191 

outline could not be resolved, the median leaf area of all conspecific leaves was used as an 192 

estimate of the initial total leaf area. Any damage registered prior to the observation period was 193 

subtracted from the measured herbivory. 194 

 195 

PREDATION PRESSURE. – Predation pressure was assessed in two of our sites (Metropolitano, 196 

Charco) in July 2014 using artificial caterpillars (hereafter 'caterpillars'; Howe et al. 2009). The 197 

caterpillars (30 x 2.5 mm, dark green color, Lewis Newplast) were odorless and non-toxic, and 198 

resembled undefended geometrid caterpillars. Members of the family Geometridae feed on 199 

woody plants and are among the most commonly observed caterpillars in forests worldwide, 200 

including our Metropolitano site (Connahs et al. 2011). 201 

 In each site, 100 caterpillars were placed individually on shaded tree recruits ≤ 100 cm 202 
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tall, ≥ 100 cm apart, with similar sized, entire, single leaves. Tree recruits were not identical to 203 

the saplings used for herbivory observations. Caterpillars were attached to the upper side of 204 

leaves with a small amount of quick-setting glue (Loctite Super Glue, Henkel) and examined for 205 

predator marks after 24 h, 48 h and 96 h (± 2 h). Attacked caterpillars were collected. Fallen 206 

caterpillars without predator marks were reattached. The caterpillars and the experimental setup 207 

followed the protocols of a global citizen science project (Roslin et al. 2017). 208 

 Predator marks were clearly visible (Fig. S1) and classified into attacks by ants, birds, 209 

mammals, lizards, snails and slugs, and unidentified predators using reference pictures from the 210 

literature (e.g. Howe et al. 2009). Caterpillars showing several types of marks were scored as 211 

attacked caterpillars for each of the relevant predator groups. We excluded caterpillars that only 212 

showed marks by snails and slugs (which are not predators on real caterpillars) or unidentified 213 

marks (Charco: 34% of caterpillars, Metropolitano: 33%), and missing caterpillars (Charco 2%, 214 

Metropolitano 1%). Very high occurrence of snail and slug attacks (70%) required the exclusion 215 

of a third, high rainfall site (San Lorenzo), initially included in the study. 216 

 217 

STATISTICAL ANALYSES. – Individual sapling herbivory was assessed as median herbivory of 218 

three to five leaves, because leaf herbivory data were heavily zero-inflated and non-normally 219 

distributed. For each sapling, we analyzed two measures of herbivory. First, we analyzed the 220 

probability of being attacked by herbivores by transforming sapling herbivory values into binary 221 

data (presence or absence of herbivory). Second, we quantified the amount of herbivory 222 

occurring on damaged individuals, including only saplings with a median herbivory greater than 223 

zero. We then tested whether the probability and amount of herbivory were significantly related 224 

to mean annual rainfall across sites, and to species' abundance within sites.  225 
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 Abundance was analyzed separately for trees and saplings to test for potentially different 226 

effects of conspecific trees versus conspecific saplings on herbivory. We assessed species' 227 

abundances in three ways: (1) using counts of tree and sapling conspecifics within each 1-ha site; 228 

(2) transforming the counts of tree and sapling conspecifics within each 1-ha site into abundance 229 

ranks to account for variation in the total number of tree stems among sites. Abundance ranks 230 

were assigned across all tree species within a site, including non-focal species. The rarest species 231 

at each site, i.e. with fewest individuals within the respective 1-ha site, was assigned the lowest 232 

rank (=1); and (3) to improve comparability across our six sites and create a consistent 233 

abundance scale ranging from 0.01 (rare) to 1 (the most abundant species in each site), we 234 

standardized abundance ranks by dividing species' ranks by the total number of ranks per site. 235 

All three analyses yielded qualitatively similar results (Table S2, Fig. S2&3). We therefore 236 

present only the third abundance measure, which improves across-site comparability by 237 

controlling for absolute abundance, in the text. 238 

 We fitted a generalized linear model with logit link function to analyze the relationship of 239 

the probability of herbivory with mean annual rainfall. The relationships of the probability of 240 

herbivory with tree abundance and with sapling abundance were analyzed with separate 241 

generalized linear mixed-effects models with logit link function. Field site was included as a 242 

random effect.  243 

 We then analyzed the amount of herbivory occurring on damaged individuals. Species 244 

with fewer than three attacked individuals per site were excluded from analyses to ensure reliable 245 

median values. The correlation of species' median herbivory with mean annual rainfall, tree 246 

abundance, and sapling abundance was tested using non-parametric Spearman rank sum tests, 247 

while controlling for the effect of field site for the two latter correlations by calculating partial 248 
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correlation coefficients using the 'ppcor' package in R (Kim 2015). 249 

 Additionally, we analyzed how the probability and amount of herbivory varied with tree 250 

and sapling abundance within each site to check whether across-gradient patterns were mirrored 251 

in within-site patterns. We used generalized linear models with logit link function for probability 252 

of herbivory, and Spearman rank sum tests for amount of herbivory. 253 

 For L. aggregatum, the only species found at all six sites, we analyzed the probability of 254 

herbivory and individual median amount of herbivory as a function of mean annual rainfall, tree 255 

abundance, and sapling abundance (for the results of all three abundance methods see Table S2, 256 

Fig. S4&5), separately, as described above. Herbivory data from all six sites were considered in 257 

the binary analysis; in the continuous analysis, the wettest site was excluded, since only one 258 

individual showed a median herbivory above zero.  259 

 Predation pressure was calculated as the proportion of caterpillars attacked and compared 260 

between the two sites with an equal proportions test. We also compared predation pressure of 261 

each predator group separately between the sites, using generalized linear models with binomial 262 

errors and cloglog link to model the probability of a caterpillar showing a particular attack mark 263 

(e.g., characteristic of ants or birds). Since caterpillars were removed from the forest after the 264 

first sign of attack by any predator, we included a log(time) offset in the models to adjust for 265 

differences in the length of exposure to predators. All statistical analyses were performed using 266 

R v3.1.2 (R Core Team 2015). 267 

 268 

RESULTS 269 

 270 

The overall amount of leaf area removed by insect herbivores over the course of the study was 271 
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low (mean 1.06%, minimum 0%, maximum 85.53%; Table S1). Extrapolating mean annual 272 

herbivory (dividing mean herbivory by the days of exposure and multiplying the result by the 273 

365 days of a year), corresponds to a mean herbivory of about eight percent per year. In total, 274 

26.8 percent of the leaves (861 of 3209), and 61 percent of the saplings (416 of 680) experienced 275 

herbivory during our study. 276 

 277 

HERBIVORY ACROSS THE GRADIENT. – Counter to our hypothesis, the probability of herbivory 278 

(Fig. 1A) and the amount of herbivory (Fig. 1C) decreased significantly with rainfall. For 279 

example, mean probability and median amount of herbivory were ~1.5 and 4.4 times higher, 280 

respectively, at the driest compared to the wettest site (Panama Pacifico: probability = 0.61, 281 

amount = 0.31%; San Lorenzo: probability = 0.42; amount = 0.07%). 282 

 283 

HERBIVORY AND ABUNDANCE. – Our hypothesis of an increase in herbivory with tree species 284 

abundance was only partially supported. Analyzing all sites together, the probability of herbivory 285 

increased significantly with sapling abundance, but not with tree abundance (Fig. 2A&B). 286 

Moreover, the amount of herbivory was not related to either tree or sapling abundance (Fig. 287 

2C&D). Analyzing each site separately, we did not find a consistent relationship between species 288 

abundance and the probability or the amount of herbivory within each site, and in most cases 289 

there was no significant relationship (Table S3). 290 

 291 

INTRASPECIFIC VARIATION IN HERBIVORY. – In L. aggregatum, neither the probability of 292 

herbivory (Fig. 1B), nor the amount of herbivory (Fig. 1D) were related to rainfall. The amount 293 

of herbivory was highest at a site with intermediate rainfall (Charco; Fig. 1D), in contrast to the 294 
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negative relationship between herbivory and rainfall observed across all species. The probability 295 

of herbivory was significantly positively related to the abundance of L. aggregatum saplings, but 296 

not trees across sites (Fig. 3A&B). The amount of herbivory of L. aggregatum was not 297 

significantly related to either tree or sapling abundance (Fig. 3C&D). 298 

 299 

PREDATION PRESSURE. – Predation pressure, i.e. the overall proportion of attacked caterpillars 300 

after 4 days, was higher in the wetter site than in the dry site (wet: 54.7%, 35 of 64 caterpillars; 301 

dry: 22.7%, 15 of 66; Fig. 4A). Attack marks mainly originated from ants, birds, and mammals 302 

in descending frequency (Fig. 4B). For these different predator groups, the probability of attack 303 

was significantly higher in the wetter site than the dry site (Fig. 4B), for attack by ants (glm: z = -304 

2.96, P = 0.003), with a similar, but non-significant, trend for attacks by birds (z = -1.896,  P = 305 

0.058) and mammals (z = -1.915, P = 0.055). Only one caterpillar was attacked by a lizard. 306 

 307 

DISCUSSION 308 

 309 

Herbivory was overall low, equivalent to eight percent per year and comparable to values 310 

reported for tropical forests in some previous studies (Eichhorn et al. 2010; Baltzer & Davies 311 

2012; Table S1). Studies reporting higher herbivory rates usually defined herbivory more 312 

broadly, e.g. including lost leaves (e.g. Brenes-Arguedas et al. 2009) or discolored parts of the 313 

leaf (e.g. Plath et al. 2012), or used means instead of more conservative medians of individual 314 

herbivore damage levels (e.g. Plath et al. 2012). Nevertheless, even small amounts of herbivory 315 

on mature leaves can increase tree recruit mortality (Eichhorn et al. 2010) and reduce sapling 316 

growth, thereby delaying the age of first reproduction and enhancing the risk of mortality 317 
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(Marquis 1984; Sullivan 2003). 318 

 319 

HERBIVORY ACROSS THE GRADIENT. – Counter to our prediction, both the probability and the 320 

amount of herbivory were lower in wetter forests (Fig. 1A&C). Insect herbivory can be 321 

suppressed at low annual rainfall (Brenes-Arguedas et al. 2009), a pattern hypothesized to result 322 

from insects experiencing an increased risk of desiccation, and/ or seasonal resource shortages in 323 

drier tropical forests (Givnish 1999). With ~1750 mm/ yr, the driest forest in our study was still 324 

relatively humid, with a dry season that may be too short to suppress herbivore pressure 325 

substantially. Nonetheless, the decreasing herbivory with increasing rainfall we report here 326 

agrees with several other studies showing higher herbivory rates on shade-tolerant plants in dry 327 

than in wet tropical forests (Coley & Barone 1996; Leigh et al. 2004; Dirzo & Boege 2008). 328 

Along the same gradient, Gaviria and Engelbrecht (2015) found evidence for a stronger impact 329 

of herbivory on plant establishment in a dry than a wet forest. Further support is provided by 330 

Novotny (2009), who questioned the idea of insect limitation through increased desiccation risk 331 

and presented evidence that insects have wider environmental tolerances than previously 332 

assumed. 333 

 Four main processes may contribute to higher herbivory in dry compared to wet sites. 334 

First, more intense and more frequent rainfall events in wet forests may constrain insect 335 

abundance and activity simply through the physical force of heavy rain (Wirth & Leal 2001; 336 

Purcell & Avilés 2008). Second, a higher predation pressure, i.e. top-down control, on herbivores 337 

in wetter forests, as indicated by our results (Fig. 4A&B) and several other studies (Stireman et 338 

al. 2005; Richards & Coley 2007; Purcell & Avilés 2008) may decrease insect herbivore 339 

abundance (Richards & Coley 2007) and feeding activity (Mazía et al. 2004; Stireman et al. 340 
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2005; Rodríguez-Castañeda 2013) in wet forests (see below). Third, anti-herbivore defense of 341 

leaves may be more pronounced in wet forest tree species and may effectively deter insect 342 

herbivores (Coley & Barone 1996; Julian Gaviria & Bettina M.J. Engelbrecht, pers. comm.). 343 

Deciduous, dry forest trees produce short-lived leaves (Santiago et al., 2004), which can easily 344 

be replaced due to lower light limitation and therefore do not need high chemical or mechanical 345 

protection against herbivores. In contrast, wet-forest trees invest more in their long-lived leaves, 346 

arming them with stronger structural defenses (Santiago et al., 2004). Lastly, the Panamanian 347 

rainfall gradient is accompanied by an increase in tree species richness, which may decrease 348 

herbivory in wetter forests via the higher number of different plant stimuli in more diverse plant 349 

communities that may hinder host recognition for specialized herbivores (Tahvanainen & Root 350 

1972; Jactel & Brockerhoff 2007; Castagneyrol et al. 2014). Peters (2003) has shown that at a 351 

given density of conspecific trees, negative density dependent mortality decreased with the 352 

number of heterospecific trees in a tropical forest, attributing this effect to herd immunity. 353 

 Despite the relatively low number of leaves measured per species per site, our study is, to 354 

our knowledge, the most comprehensive analysis of insect herbivory in forest ecosystems across 355 

a rainfall gradient. While our data apply only to folivores, our results, together with earlier 356 

studies (Leigh et al. 2004; Mazía et al. 2004; Dirzo & Boege 2008), run counter to the theoretical 357 

prediction that insect herbivory increases with rainfall and is therefore a more important 358 

determinant of plant population dynamics and community composition in wetter tropical forests 359 

(Connell 1971; Givnish 1999; Leigh et al. 2004). CNDD may nevertheless contribute to high tree 360 

alpha-diversity via mechanisms other than herbivory, such as mortality from pathogens (Bagchi 361 

et al. 2014) or intraspecific competition for resources, or by acting more strongly on other life-362 

stages (Zhu et al. 2015). 363 
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 364 

HERBIVORY AND ABUNDANCE. – The probability of herbivory increased with higher conspecific 365 

sapling abundance (Fig. 2B). However, the probability of herbivory was not related to tree 366 

abundance (Fig. 2A), and the amount of herbivory did not increase with abundance (Fig. 2C&D). 367 

In addition, when analyzing sites separately, we did not find a consistent relationship between 368 

abundance and herbivory (Table S3). Insect herbivores may respond to host leaf biomass rather 369 

than tree number. However, it is unlikely that in all our sites the rarest species had a similar or 370 

higher leaf biomass, i.e. larger and/ or more leaves, than the abundant species and such effects 371 

are therefore unlikely to have biased our results. We may have underestimated herbivory – 372 

abundance relationships, if insects respond to tree density at very small scales, because we 373 

avoided conspecific plant clusters in our sampling protocol. Nevertheless, our results indicate 374 

that the relationship between local plant abundance and insect herbivory is complex. 375 

 The higher probability of herbivory in tree species with higher sapling abundance 376 

supports our hypothesis and is in line with a rare species advantage facilitating species 377 

coexistence (Connell 1984). In abundant tree species, shorter distances between conspecific 378 

saplings may favor host-switching from one sapling to another, which has been suggested to 379 

benefit insect herbivores via intraspecific diet mixing (Plath et al. 2012; Hambäck et al. 2014). In 380 

contrast, saplings of rare species are likely to be more isolated from conspecifics, reducing the 381 

encounter rate and the probability of herbivory. Additionally, the diversity of cues emitted by 382 

plant species in tropical forests may cause a chemical masking of isolated tree individuals, 383 

further complicating host-finding for herbivores of rare species (Tahvanainen & Root 1972). 384 

Thus, a higher distance between individual plants combined with insect dispersal limitation may 385 

explain our result of the reduced probability of herbivory in rare species. 386 
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 The lack of an increase in the amount of herbivory across abundance was, in contrast, 387 

unexpected and may seem at odds with a rare species advantage. A lower probability of 388 

herbivory in rare species alone may nevertheless allow the persistence of rare species within a 389 

community, if the saplings of rare species benefit enough from escape of herbivore attack to gain 390 

a competitive advantage compared to abundant species. The results thus point towards more 391 

complex processes influencing the relationship between host abundance and herbivory than 392 

expected. 393 

 394 

INTRASPECIFIC VARIATION IN HERBIVORY. – In the one species studied across all six forest sites, 395 

L. aggregatum, the probability of herbivory increased with conspecific sapling abundance across 396 

sites, but was not related to conspecific tree abundance (Fig. 3A&B). Further, the amount of 397 

herbivory was not related to either tree or sapling abundance. Thus, the relationship of herbivory 398 

with abundance in L. aggregatum was similar to the pattern found in our across-species analyses. 399 

However, neither the probability nor the amount (Fig. 1B&D) of herbivory in L. aggregatum was 400 

related to rainfall, in contrast to the across-species pattern of decreasing herbivory with rainfall. 401 

A recent study of seed predation by insects across the same set of field sites in Panama also 402 

found no significant association between rainfall and levels of insect attack on fifteen focal plant 403 

species (Jeffs et al., in revision). The divergent herbivory patterns in L. aggregatum imply that 404 

tree species may differ substantially in the relation of herbivory to rainfall. In addition to rainfall, 405 

other abiotic (e.g. nutrients, light) and biotic conditions (herbivore and plant community 406 

composition) vary across sites and, depending on species-specific ecological optima for plant 407 

and associated herbivore species, may strongly impact plant-insect interactions (Loranger et al. 408 

2013; Hambäck et al. 2014). These results indicate that studies focusing on single plant species 409 



 

18 

are unlikely to yield representative results and highlight the need for community level studies. 410 

 411 

PREDATION PRESSURE. – The overall predation pressure and the probability of attack by each of 412 

the three main predator groups (ants, birds, mammals) were higher in the wetter than in the dry 413 

site (Fig. 4A&B). This trend is consistent with a previous study showing increasing predation 414 

with rainfall (Stireman et al. 2005), and with the notion that ants and birds are the most 415 

important predators of tropical insect herbivores (Tvardikova & Novotny 2012; Sam et al. 2015). 416 

Nevertheless, with only two sites, our results should be interpreted cautiously since the sites may 417 

differ in other ways that could influence predation rates (e.g., our drier site is located within an 418 

urbanized area, which may reduce predator abundances). 419 

 The relative importance of predator-imposed, top-down control compared to bottom-up 420 

regulation of herbivores has been hypothesized to increase with stability of climatic factors 421 

regulating ecosystem productivity, such as rainfall (enemies hypothesis; Root 1973; Oksanen et 422 

al. 1981). High and stable primary productivity is proposed to result in high and stable herbivore 423 

abundance throughout the year, which may result in a higher number of predators. In line with 424 

this prediction, Ferger et al. (2014) found that higher precipitation indirectly increases African 425 

insectivore bird richness, possibly mediated by an increase in vegetation complexity and biomass 426 

of invertebrates. Higher tree species richness in wetter forests may enhance the supply of 427 

alternative and complementary food sources, such as nectar, which may stabilize predator 428 

populations and improve their fitness (Russell 1989). Further, predators may be less sensitive to 429 

the physical effects of rainfall than herbivores due to their larger size and greater robustness. 430 

 Predation on larval stages poses a substantial mortality risk for herbivores and can 431 

additionally lead to behavioral changes, causing insect herbivores to spend relatively less time 432 
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feeding and more time sheltering (Mazía et al. 2004; Tvardikova & Novotny 2012). In 433 

combination, lethal and behavioral effects of predators have been shown to halve herbivory 434 

(Mazía et al. 2004). Increased predation pressure towards wetter forests is therefore likely to 435 

contribute to the unexpected decrease of herbivory with rainfall that we observed. 436 

 437 

CONCLUSION. – To the best of our knowledge, our analysis based on data from six forest sites 438 

represents the most comprehensive investigation of insect herbivory in forest ecosystems across 439 

a rainfall gradient. Our data suggest that the increase in the probability of herbivory with local 440 

sapling abundance could facilitate tree species co-existence. It remains to be tested, however, 441 

whether the lower probability of herbivory in rare tree species is indeed translated into a 442 

competitive advantage. 443 

 We did not find support for the prediction that higher insect herbivory contributes to the 444 

increase in tree species richness with rainfall across the Isthmus of Panama. Rather, herbivory 445 

strongly decreased with rainfall, which may be at least partly explained by higher predation 446 

pressure in wetter forests. Our study highlights the need to incorporate multiple trophic levels 447 

when assessing the factors contributing to patterns of species richness.  448 
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TABLE 1 Study sites (1-ha), their coordinates, mean annual rainfall, and number of woody 626 

species with stems ≥ 1 cm dbh (Condit 1998b and this study) and small saplings (≥ 20 cm tall, < 627 

1 cm dbh). 628 

Forest site Location 
 Rainfall 

[mm/ yr] 

Species No.  

(≥ 1 cm dbh) 

Species No.  

(< 1 cm dbh) 

Panama Pacifico 8°56'36.60''N 79°36'5.52''W 1756 74 46 

Metropolitano 8°59'40.52''N 79°32'34.80''W 1874 47 33 

Charco 9°5'2.58''N 79°39'48.24''W 2050 82 53 

Pipeline Road 9°9'23.40''N 79°44'39.12''W 2311 130 79 

Santa Rita 9°20'8.08''N 79°46'50.67''W 3053 201 108 

San Lorenzo 9°16'51.13''N 79°58'28.92''W 3203 161 65 
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FIGURE 1 Relationship of (A, B) mean probability and (C, D) species median percentage of 629 

insect herbivory with rainfall. Data are shown for (A, C) the full set of 42 tree species and for (B, 630 

D) only Lacistema aggregatum. Point sizes reflect the (A, C) number of individuals measured 631 

per plant species and the (B, D) the number of individuals per site. (A, B) Lines give results of 632 

logistic regressions (continuous and dashed for significant and non-significant results, 633 

respectively). (C, D) Results of Spearman rank sum tests are shown. 634 

 635 
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FIGURE 2 Relationship of (A, B) species' mean probabilities of herbivory and (C, D) median 636 

amount of herbivory with (A, C) species tree and (B, D) sapling abundance ranks. Higher ranks 637 

indicate higher individual numbers. Point sizes reflect the  number of individuals measured per 638 

plant species. Results from (A, B) logistic regressions and (C, D) Spearman rank sum tests are 639 

given.  640 

 641 

 642 
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FIGURE 3 Probability of (A, B) leaf herbivory and (C, D) amount of herbivory for saplings of 643 

Lacistema aggregatum in relation to (A, C) tree and (B, D) sapling abundance rank. (A, B) Point 644 

sizes reflect the number of individuals measured per site. (A, B) Lines give results of logistic 645 

regressions. (C, D) Results of Spearman rank sum tests are presented. 646 

 647 
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FIGURE 4 Predation pressure on artificial caterpillars in a drier (Metropolitano; 1874 mm/ yr) 650 

and a wetter (Charco; 2050 mm/ yr) tropical forest. Shown is (A) the proportion of caterpillars 651 

attacked after 96 hours of exposure and the result of an equal proportions test, and (B) the 652 

proportion of caterpillars showing attack marks of three main predator groups and the results of 653 

generalized linear models. 654 

 655 


