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Abstract
To improve projections of consequences of increasing intensity and frequency of drought events for grasslands, we need a 
thorough understanding of species performance responses to drought, of performance trade-offs and how drought resistance 
is related to species distributions. However, comparative and quantitative assessments of whole-plant drought resistance 
that allow to rigorously address these aspects are lacking for temperate grassland species. We conducted a common garden 
experiment with 40 common temperate grassland species to compare species survival and growth under intense drought and 
well-irrigated conditions. Overall, survival and growth were significantly reduced under drought, with the effect varying 
across species. Species ranking of drought damage and survival remained consistent with progressing drought. No perfor-
mance trade-offs emerged between optimal growth and drought resistance of survival (‘growth–stress tolerance’ trade-off 
hypothesis), or between growth under well-watered and dry conditions (‘growth rates’ trade-off hypothesis). Species local- 
and large-scale association with moisture (Ellenberg F value and rainfall niche) was not related to their drought resistance. 
Overall, our results imply that trade-offs and differences of species fundamental drought resistance are not the main drivers 
of hydrological niche differentiation, species coexistence and their distribution across moisture gradients. The comparative 
experimental assessment of species whole-plant drought responses we present provides a basis to increase our understanding 
of current grassland responses to variation of moisture regimes and for projecting consequences of future changes.
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Introduction

Drought is an important driver of community composition, 
diversity, and ecosystem function in a variety of ecosystems 
worldwide. Temperate grasslands are among the most wide-
spread biomes on earth, exhibit high species richness, con-
tain economically important species, and provide key eco-
system services (Gibson 2009). In a wide range of temperate 
grasslands, drought decreases productivity and influences 
species abundance and distribution, as well as community 
composition and diversity patterns (Tilman and El Haddi 
1992; Buckland et al. 1997; Knapp et al. 2002). In turn, the 
response and resilience of grasslands to drought are influ-
enced by community composition and diversity (Tilman and 
Downing 1994; Isbell et al. 2015). Species drought resist-
ance, i.e., their ability to withstand periods of low water 
availability, varies widely, and species segregate across 
moisture gradients even within grassland communities 
(Buckland et al. 1997; Silvertown et al. 2015). The intensity 
and frequency of drought events are expected to increase 
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with climate change for many regions, including temperate 
grasslands (IPCC 2014). It remains unclear to what extent 
the consequences of such extreme drought events can be 
extrapolated from studies under moderate drought condi-
tions (Williams and Jackson 2007; Slette et al. 2019). There 
is, thus, an urgent need to improve our understanding of the 
responses of grassland species to drought.

Performance trade-offs are central in explaining species 
sorting along environmental gradients and species coexist-
ence (Levins and Culver 1971; Chesson 1985; Rees et al. 
2001). A prominent trade-off that has been suggested is a 
trade-off between growth rates under optimal conditions and 
tolerance against stress (i.e., fast-growing species are stress 
intolerant, ‘growth–stress tolerance’ trade-off hypothesis; 
Grime and Hunt 1975). This trade-off is consistent with the 
concepts of resource acquisition vs. conservation strategies 
or the slow vs. fast plant economics spectrum (Craine 2009; 
Reich 2014). On the other hand, a trade-off between spe-
cies relative growth rate at different resource levels has been 
proposed to lead to species rank reversals along gradients 
of resource availability (‘growth rates’ trade-off hypoth-
esis; Latham 1992). Despite their pervasive implications 
for competition, community dynamics and species distri-
butions under changing moisture regimes, these trade-offs 
have rarely been empirically studied concerning drought. 
Studies are especially missing at the level of whole-plant 
performance, which is the most directly relevant level for 
driving ecological patterns and processes (e.g., Kneitel 
and Chase 2004). For drought, to our knowledge, only two 
studies have explicitly tested the ‘growth–stress tolerance’ 
trade-off hypothesis based on growth and survival in grass-
land species, and both did not find a trade-off (Fernández 
and Reynolds 2000; Zwicke et al. 2015, in eight and seven 
species, respectively). The ‘growth rates’ trade-off has been 
tested in one study in grassland species, which found a 
strong positive correlation of growth under high and low 
moisture conditions, rather than a trade-off (Reader et al. 
1993). A lack of comparative datasets on species whole-
plant drought responses hinders further testing these central 
hypotheses in plant ecology.

Associations of species’ local- and large-scale distribu-
tion patterns with soil moisture are among the most promi-
nent biogeographic patterns (Silvertown et al. 2015 and 
references therein). Direct effects of moisture on plant per-
formance as well as indirect effects of biotic or other abiotic 
factors correlated with moisture (e.g., pathogens, nutrients, 
light; Normand et al. 2009; Silvertown et al. 2015) may 
lead to these patterns. Linking species whole-plant drought 
resistance, which reflects species fundamental niche regard-
ing drought, to their distribution across moisture gradients 
(i.e., their realized niche) allows us to differentiate to what 
extent differences in species fundamental drought resist-
ance directly determine species distribution across moisture 

gradients (Engelbrecht et al. 2007a; Esquivel-Muelbert et al. 
2017a).

Drought periods can act as a filter, excluding drought-
sensitive species from drier sites (‘physiological tolerance 
hypothesis’, Currie et al. 2004). On the other hand, the 
occurrence of drought-resistant species under moist condi-
tions may be limited by trade-offs between drought resist-
ance and optimal growth rates, or between performances 
under different moisture levels (see above). Trade-offs 
between drought resistance and tolerances to other abiotic 
(e.g., low nutrients or light) or biotic factors could also 
exclude drought-resistant species from moist sites (e.g., 
Silvertown et al. 2015; Grubb 2016; Gaviria et al. 2017). 
This should lead to a turnover of species with increasingly 
lower drought resistance along moisture gradients, resulting 
in a negative relationship between species drought resist-
ance and their association to moist conditions. Evaluation of 
the direct role of species differential drought resistance for 
their distributions is still outstanding in grasslands, although 
it is fundamental to projecting consequences of changes in 
drought regimes.

In this study, we quantified drought responses of 42 
common temperate grassland species by comparing sur-
vival (whole-plant and aboveground), and relative growth 
rate under dry and irrigated conditions in a common garden 
experiment. This approach allowed us to assess the impor-
tance of drought effects on species performance, independ-
ent of effects of other abiotic (e.g., light and nutrients) and 
biotic factors (e.g., plant–plant interactions, herbivores or 
pathogens, Engelbrecht et al. 2005).

We tested the hypotheses that (1) species differ in their 
drought responses (i.e., some species are sensitive but oth-
ers resistant to drought), (2) the ranking of species drought 
performance remains consistent with increasing drought 
duration, (3) there are performance trade-offs with respect 
to drought, specifically (a) a ‘growth–stress tolerance’ trade-
off, and (b) a trade-off between growth rates under high and 
low water availability, and (4) species drought resistance is 
negatively related to their local- and large-scale association 
with moisture (i.e., Ellenberg F values and rainfall niche).

Materials and methods

Field site

The experiment was conducted in a meadow in the Eco-
logical Botanical Garden of the University of Bayreuth, 
Germany (49°55′19″ N, 11°34′55″ E) in 2015. The area 
has a temperate climate with 745 mm mean annual precipi-
tation and 8.7 °C mean annual temperature (1998–2007, 
data: EBG). Rainfall occurs mostly in the growing season 
with mean monthly rainfall between 60 and 85 mm. Mean 
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monthly temperature ranges between − 0.1 and 17.8 °C with 
July being the warmest month. In the study area, 32 days or 
42 consecutive days without rain during the growing season 
are considered extreme meteorological drought events based 
on the 100-year and 1000-year recurrence, respectively 
(Jentsch et al. 2011)—compared to a 67-day dry treatment 
in our study (see below). The 2015 summer was extremely 
hot and dry in Central Europe (Orth et al. 2017), which 
was reflected in the local conditions during the experiment 
(Table S1). For conditions in the experiment, see below.

Study species

We selected 42 perennial species, 19 grasses (Poaceae) 
and 23 forbs (8 families including five legume species; 
Table S2), according to the following criteria: (a) common 
species in German grasslands, based on 150 grassland plots 
in Germany (Socher et al. 2012), (b) local habitat association 
with a wide range of moisture conditions (based on Ellen-
berg indicator values for moisture, F values ranging from 3 
to 7, Ellenberg et al. 1991), and (c) to include grasses and 
forbs including legumes and non-legumes. Grasses and forbs 
did not differ in moisture associations (median F value = 5 
for both).

Seeds were purchased from commercial seed suppliers 
(Rieger-Hofmann GmbH and Saaten Zeller, Germany, and 
Cruydt-Hoeck, Netherlands). They were germinated and 
grown in the greenhouse for 3 months in the same substrate 
used in the field experiment (see below). Similar size indi-
viduals were selected within each species for the experiment 
to reduce effects of size variability.

Two species exhibited poor performance already in the 
greenhouse and had less than 70% survival even under irri-
gated conditions (Table S3). We, therefore, excluded them 
from the analyses presented in the text. Analyses with and 
without them yielded qualitatively the same results (see sup-
plementary material).

Experimental design

The goal of the experiment was to expose all species to 
uniformly severe drought conditions to assess whole-plant 
drought responses in a way that is directly comparable 
across all species and independent of species interactions. 
We defined drought as a decrease of water input that leads 
to a decline of soil moisture, a definition that is commonly 
used in plant sciences (Gilbert and Medina 2016). Whether 
the decline of soil moisture affects a plant is determined 
by its characteristics and can vary between species. We did 
not aim to mimic a specific natural drought event or cli-
mate change regime. By exposing the plants to experimental 
drought in the field, we avoided common problems associ-
ated with drought experiments in pots, namely that soil water 

depletion is strongly influenced by plant size and differences 
in transpiration rates, hindering meaningful comparisons 
among species (Comita and Engelbrecht 2014).

Seedlings were transplanted to 72 plots and exposed to 
two treatments: a dry treatment, where irrigation was dis-
continued for 10 weeks in the late summer (36 plots), and 
an irrigated treatment, where high and favorable water avail-
ability was maintained throughout the experiment (36 plots). 
The plots (1 m × 2 m) were dug out to 1-m depth and filled 
with sand (97% sand, 2% silt and 1% clay) to ensure that all 
plants were exposed to uniform soil, and that they dry down 
to stressfully low levels of water availability (i.e., through 
low water holding capacity of sand compared to the local 
loamy soil). All plots were located under transparent rain-
out shelters so that both treatments experienced the same 
light and temperature conditions (see below). Seedlings were 
planted at 20-cm distance in a rectangular grid (Fig. S1) 
to minimize plant–plant interactions (i.e., leaves and roots 
were not overlapping among individuals), thus allowing us 
to assess the fundamental drought responses of the species.

One individual of each species was planted into each plot 
(i.e., aiming for 36 individuals per species in each treat-
ment), with species randomly assigned to the grid points. 
Treatments were blocked to avoid cross-effects of irrigation 
on dry plots: two plots were set under each shelter, and six 
shelters were blocked for a treatment (in total six blocks with 
36 shelters; see Fig. S1). Plots under each shelter were set up 
at 0.5-m distance, and shelters and blocks had 1-m and 2-m 
distance to each other, respectively.

Seedlings were transplanted in the first week of June 
2015, and all were regularly irrigated to allow for establish-
ment in the soil. Irrigation was implemented with a drip-irri-
gation system, with the amount of irrigation adjusted indi-
vidually for each plot and according to weather conditions 
to ensure optimal moist conditions, avoiding both superficial 
soil drying and waterlogging (based on inspection at least 
five times a week, higher irrigation on warmer/sunnier days). 
Irrigation was discontinued in the dry treatment plots from 
03 Aug 2015 to 09 Oct 2015 (10 weeks). At the end of the 
drought treatment, we rewatered all plots and removed plas-
tic covers, so that all plots were exposed to natural precipita-
tion until the next spring.

The rain-out shelters (3 m × 3.5 m size, 2.1-m high at 
the highest point) were covered with transparent plastic foil 
(200 μm; Gewächshausfolie UV5, folitec Agrarfolienver-
triebs GmbH, Westerburg, Germany) with a light transmit-
tance of 86% (assessed with AP4, Delta-T, Cambridge). 
To allow for air circulation, two sides of the shelters were 
entirely open, and the others were covered down to 50 cm 
above the soil. Slow release fertilizer (Terra  Plus®N; N:P:K 
12:4:6%) was applied twice before the start of the treatments 
(30 g m−2) to minimize potential nutrient limitation. Plots 
were regularly weeded and surrounding areas were mowed 
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to avoid competition from non-target species, and fenced to 
exclude mammalian herbivores such as deer or hares.

Environmental conditions in the experiment

We monitored soil water status with gypsum blocks (GB-1 
and KS-D1, Delmhorst, NJ), installed at 15-cm soil depth in 
every plot and additionally at 30-cm depth in six haphazardly 
chosen plots in each treatment. Readings were taken every 
3–5 days around midday and were converted to soil water 
potentials based on calibration curves. In the irrigated plots 
soil water potentials remained above − 0.04 MPa through-
out the experiment. Dry plots reached soil water potentials 
below − 1.5 MPa (the permanent wilting point, Veihmeyer 
and Hendrickson 1928) after 26 ± 9 days (mean ± SD). We 
additionally characterized midday leaf water potentials in the 
dry treatment on 3–8 individuals per species in weeks 2–3 of 
the experimental drought period with leaf cutter psychrom-
eters (Merrill Specialty Equipment, Logan, Utah, USA) and 
a PSYPRO™ water potential system (Wescor, Inc., Logan, 
Utah, USA). Midday leaf water potentials varied strongly 
across species and already reached low values, with species 
means ranging from − 1.1 to − 5.7 MPa (Sun et al. 2020).

Under the rain-out shelters, daily mean air temperature 
was 19.4 °C and daily mean relative humidity 74.7% (both 
assessed with i-buttons, DS1920, Maxim Integrated, CA) 
with no difference between the treatments (t tests, P > 0.3 
for both).

Assessments of plant performance and drought 
resistance

We assessed plant performance based on survival (whole-
plant and aboveground) and relative growth rates (RGR). 
We also classified visually observed drought damage, i.e., 
leaf wilting and necrosis (modified from Engelbrecht and 
Kursar 2003, and IRRI 1996, see Table S4). Drought dam-
age and aboveground survival were assessed in all plots once 
per week during the drought experiment. To differentiate 
individuals where all aboveground organs died but below-
ground meristems survived (i.e., aboveground mortality) 
from individuals where even belowground organs died (i.e., 
whole-plant mortality), we rechecked all plants for resprout-
ing in the next growing season (June 2016). In the follow-
ing, the term whole-plant survival refers to individuals that 
survived the drought (assessed in the next growing season), 
and aboveground survival refers to individuals that main-
tained living aboveground biomass during the drought. We 
quantified species’ survival in the irrigated and dry treatment 
as the percentage of individuals that survived (whole-plant 
or aboveground) in the respective treatment relative to the 
initial number of individuals.

We monitored relative growth rate (RGR) between the 
first week and sixth week of the treatment (~ 42 days, equiva-
lent to a 1000-year extreme, see above) for all individuals 
in a subsample of six plots for each treatment (see Table S2 
for specific sample sizes). We assessed RGR based on the 
increase (or loss) of the plants’ projected green leaf area 
(LA). This non-destructive method allowed for repeated 
monitoring of growth and survival on the same individu-
als. LA was determined as the area of an octagon with the 
focal plant in the center, and with the endpoints of living 
leaf area along eight plant radii (in 45° angles) represent-
ing the corners (compare Breitschwerdt et al. 2018). Tillers 
were included in the projected LA. We calculated RGR  (cm2 
 cm−2  day−1) from the consecutive measurements in each 
individual as RGR = (LA2 − LA1)(LA1)−1 (T2 − T1)−1 (Hunt 
1978), where  LA1 and  LA2 are projected green leaf area at 
time T1 and time T2. Species RGR under irrigated conditions 
(i.e., combined with high light and nutrients) was signifi-
cantly correlated with comparative assessments of maximum 
growth rates (RGR max) in a subsample of 24 of the study 
species in Grime and Hunt (1975; r = 0.41, P < 0.05), sup-
porting that the non-destructive method usefully captured 
comparative growth rates. We focused the analyses on RGR 
of surviving individuals, i.e., the individuals that will con-
tribute to future population dynamics. This parameter does 
not capture the loss of leaf area (or biomass) occurring in 
the plants that died, which is relevant for a community or 
ecosystem perspective. We, thus, additionally analyzed RGR 
based on all individuals including dead ones (LA = 0). RGR 
based on survivors and all individuals was highly correlated, 
and all results with or without including dead individuals 
were qualitatively similar. All analyses in the text refer to 
survivors only.

We quantified species comparative drought resistance 
(DR) as the response ratio of survival (whole-plant,  DRs.whole 
or aboveground,  DRs.above) or of growth  (DRgrowth) in the 
dry relative to the irrigated treatment (compare Engelbrecht 
and Kursar 2003). Thus, drought resistance of survival was 
calculated as  DRs = %  survivaldry/%  survivalirrigated. Drought 
resistance of growth was calculated as  DRgrowth = RGR dry/
RGR irrigated, where RGR dry and RGR irrigated were the median 
RGR in each treatment because RGR was not normally 
distributed.

Species distribution across moisture gradients

To characterize the species association with moisture at the 
local habitat scale and a large scale, we used Ellenberg indi-
cator values for moisture (F value, Ellenberg et al. 1991, 
see Table S1) and the species rainfall niches, respectively. 
F values are highly correlated with species distributions 
across directly measured moisture gradients in Europe and 
can, thus, be considered reliable indicators of species local 
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habitat moisture association (Diekmann 2003). Species that 
showed no association with soil moisture (F value = X) 
were excluded from the respective analyses. Species rainfall 
niches were assessed at a spatial resolution of 1 km2 based 
on overlaying annual rainfall from 1979 to 2013 (CHELSA 
version 1.2, Karger et al. 2017) on species distribution maps 
(extracted from the GBIF database, using the rgbif package, 
Chamberlain et al. 2019). The climate data matrix for the 
focal species was assembled with the raster package (Hij-
mans 2017). The mean, median, 5th percentile and 95th per-
centile of the rainfall niche were assessed for each species 
(Table S1).

Statistical analyses

Our main aims were to quantify fundamental drought 
responses of the species and their role in performance 
trade-offs and species distributions across moisture gradi-
ents. We first tested the effects of treatment, species and 
their interactions (treatment × species) on survival (whole-
plant and aboveground), and growth by fitting binomial gen-
eralized linear mixed-effects models (GLMM) and linear 
mixed models (LMM), respectively, using the lme4 package 
(Bates et al. 2015). Treatment and species were used as fixed 
effects, and blocks and plots nested in blocks as random 
effects in each model. The significance of the fixed factors 
in GLMM was calculated with a Wald test on the full model 
(Bolker et al. 2009). To additionally assess if treatment and 
species differences also occurred within life forms, we fitted 
the models (GLMM and LMM, see above) separately for 
grasses and forbs. We also assessed the significance of the 
effect of the drought treatment on survival and growth on 
each individual species, using separate models for each spe-
cies with treatment as a fixed and block as a random effect.

We tested if species ranking of drought performance 
stayed consistent over the duration of the experimen-
tal drought. We examined Spearman’s rank correlations 
between various measures of drought performance after 
different durations of the dry treatment (weeks 2–9) since 
data were not normally distributed even after log transforma-
tion. We also related them to drought survival (whole-plant 
and aboveground after 10 weeks) or drought resistance with 
respect to survival and growth. The measures of drought 
performance were: % individuals without wilting, % indi-
viduals without necrosis, and % aboveground survival (for 
drought-damage categories see Table S4).

To test the relations between growth under optimal con-
ditions and drought resistance of survival (RGR irrigated vs. 
 DRs.whole, ‘growth–stress tolerance’ trade-off hypothesis), 
and between species’ growth under irrigated and dry con-
ditions (RGR irrigated vs. RGR dry, ‘growth rates’ trade-off 
hypothesis), we used linear regressions. RGR irrigated, which 
was measured under concurrently high moisture, light and 

nutrient conditions, was used as growth rate under optimal 
conditions in the test of the ‘growth–stress tolerance’ trade-
off. We conducted analyses across species and separately for 
each life form. We additionally tested the relation of RGR 
irrigated with visually assessed drought performance after dif-
ferent duration of the dry treatment as alternative measures 
of drought tolerance (see above).

To test the effects of drought resistance, life form and 
their interactions (drought resistance x life form) on species 
moisture association (i.e., F value and rainfall niche), linear 
regression analyses were performed. Ellenberg indicator 
values can be treated as quasi-metric data in correlations 
and regressions (Ellenberg et al. 1991; Diekmann 2003; 
Bartelheimer and Poschlod 2016). We thus analyzed the 
effects of species drought resistance  (DRs.whole,  DRs.above and 
 DRgrowth), life forms (grass and forb), and their interaction 
on species moisture association, separately for the F values, 
and the mean, median, 5th percentile, and 95th percentile 
rainfall niche.

We visually evaluated the normality of the residuals in all 
analyses and  DRgrowth was consequently log-transformed to 
improve normality. To avoid negative values, 4 was added 
to  DRgrowth as a constant value before applying the log 
transformation.

All statistical analyses were performed in R version 3.3.3 
(<https ://www.r-proje ct.org/>).

Results

Drought damage and consistency of species 
drought responses over time

All species exhibited wilting and necrosis in the dry treat-
ment. Its extent and the progression varied strongly among 
species (Fig. 1, Fig. S2). While some species exhibited pro-
nounced wilting and extensive tissue necrosis with complete 
aboveground mortality in many individuals, others showed 
only little wilting and slight necrosis (Fig. 1, Fig. S2).

Survival throughout the intense dry treatment was overall 
high, both for the whole plants (see below for details) and 
for aboveground organs. More than half of the species had 
higher than 90% aboveground survival. Of those species 
where some individuals exhibited complete aboveground 
mortality, 83% exhibited resprouting (Table S2, Fig. S3).

Species ranking of drought performance stayed consistent 
across different durations of the dry treatment (see Fig. 2 for 
examples). Aboveground survival at different time points 
into the drought was highly positively correlated with each 
other across species, as well as with whole-plant survival 
and with drought resistance for survival (r > 0.8, P < 0.001 
for all, Table S5). Similarly, the percentage of individuals 
without wilting or necrosis at different time points into the 

https://www.r-project.org/
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Fig. 1  Progression of visual damage in six selected temperate grass-
land species over 10 weeks of drought, as examples. Shown are the 
% individuals in different drought damage categories (see Table S4) 
represented by the color scale, from no visual sign of stress (1, dark 
green) through progressive signs of wilting or rolling, and tissue 
necrosis to complete death of all aboveground biomass (9, black). 
Grasses are presented in the first row and forbs in the second row. For 

species codes, see Table S1. Shown are two examples for species with 
low aboveground mortality and either a early visual signs of drought 
damage or d few and late signs of stress, two examples for interme-
diate species with b, e moderate aboveground mortality and early 
drought damage, and two examples of species with c, f high above-
ground mortality and early drought damage. See Fig. S2 for graphs of 
all species. Color version of this figure is available online

Fig. 2  Examples for a–c rela-
tions between whole-plant 
drought survival and perfor-
mance after different durations 
of drought, and d between 
aboveground survival after 
10 weeks and aboveground 
survival after shorter drought 
periods. Shown are relations 
for a % individuals without any 
signs of wilting, b % indi-
viduals without necrosis and 
c, d % aboveground survival. 
Reponses are indicated for three 
of the drought durations. All 
Spearman’s rank correlations 
were significant (P < 0.01). See 
Table S5 for the complete corre-
lation tables. For visualization, 
regression lines are shown

(a) (b)

(c) (d)
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drought was highly positively related to each other across 
species, and to the final survival (whole-plant and above-
ground) at the end of the drought (Table S5). On the other 
hand, drought damage and aboveground survival were 
consistently unrelated to drought resistance for growth 
(Table S5).

Drought effects on plant survival and growth

Even after the intense dry treatment, 70% of the species 
exhibited more than 90% whole-plant survival (Fig. 3a). 
RGR was positive in most species even under dry condi-
tions (to week 6). Net losses of projected leaf area occurred 
only in five species (12%). Nevertheless, across all species, 
the dry treatment had a significant negative effect on survival 
(whole-plant and aboveground) and growth (Table 1). Spe-
cies significantly differed in survival and growth without sig-
nificant treatment x species interactions (Table 1, Table S6). 

Similar results emerged in grasses separately, but in forbs, 
the drought had no significant effect on whole-plant survival 
and RGR. 

Within individual species, the dry treatment had a sig-
nificant negative effect on whole-plant survival and above-
ground survival in 15% and 30% of the species, respec-
tively (Fig. 3a, Table S7). RGR was significantly negatively 
affected by drought in 34% of the species (Fig. 3b, Table S7).

Drought resistance varied continuously across species 
for whole-plant survival  (DRs.whole), aboveground survival 
 (DRs.above), and growth  (DRgrowth; Fig. S4). All parameters 
did not vary between life forms (t tests, P > 0.1).

Testing for performance trade‑offs with respect 
to drought

We found no indication of a trade-off between optimal 
growth and drought survival. Growth in the irrigated 
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Fig. 3  a Survival and b relative growth rate (RGR, median, and the 
25% and 75% quartiles) of 40 perennial temperate grassland spe-
cies under dry and irrigated conditions. Given are % individuals that 
survived (at the whole plant level) relative to the initial number of 
individuals, and RGR based on projected living leaf area. Species 
are ordered according to their drought resistance (compare Fig. S4), 

i.e., from large to small responses to the dry relative to the irrigated 
treatment, for survival and RGR, respectively. Grasses and forbs are 
indicated with G and F, respectively. Significance of treatment effects 
within each species are given as (*)P < 0.1, *P < 0.05, **P < 0.01. 
For details see Table S7. For overall treatment and species effects see 
Table 1. Color version of this figure is available online



1030 Oecologia (2020) 192:1023–1036

1 3

treatment (RGR irrigated) and drought resistance for whole-
plant survival  (DRs.whole) were unrelated across all species 
and within grasses, and even marginally positively related 
within forbs (Fig. 4a, Table S8).  DRs.whole was also unre-
lated to RGR max from the literature (P > 0.1, 24 species from 
Grime and Hunt 1975), further supporting our results. Simi-
larly, there was no trade-off between RGR irrigated and other 
measures of species drought tolerance, i.e., % individuals 
without wilting, % individuals without necrosis or % above-
ground survival (Table S5).

Species growth rates in the irrigated and the dry treat-
ment (RGR irrigated vs. RGR dry) were marginally significantly 
positively related across species (Fig. 4b), indicating no 
trade-off between growth rates under high and low moisture 
conditions. Within forbs, the relation was even significantly 
positively; while no relation emerged within grasses.

Testing for relations of drought resistance to species 
moisture association

Drought resistance with respect to whole-plant survival, 
aboveground survival or growth  (DRs.whole,  DRs.above, 
 DRgrowth) was not related (P > 0.1) to species local habitat 
moisture association (F value; Fig. 5a, b) nor to the large-
scale rainfall niche (Fig. 5c, d for the median, Fig. S5 for 
the mean, 5th, and 95th percentile). Life form had no sig-
nificant effect on species local- or regional-scale moisture 

association, and there was no drought resistance × life form 
interaction (all P  >> 0.1).

Discussion

High drought resistance of temperate grassland 
species

Drought had an overall negative impact on survival (both 
whole-plant and aboveground) and growth of common tem-
perate grassland species. Wilting and leaf necrosis increased 
with drought duration. However, high survival and positive 
growth under the drought in most species indicate that many 
species in temperate grasslands are well adapted to even 
intense drought conditions. These findings are consistent 

Table 1  Effects of drought treatment, species, and their interaction on 
survival (whole-plant and aboveground) and relative growth rate in 
40 grassland species

Regression models (GLMM and LMM) were run across all species 
and additionally for the two life forms (grasses and forbs), sepa-
rately. Blocks and plots nested in blocks were included as random 
effects in each model. Given are  Chi2 and F values for survival and 
growth, respectively. Significance levels are indicated as *P < 0.05, 
**P < 0.01, ***P < 0.001. See Table S6 for analyses over all initial 42 
species

Treatment Species Treat-
ment × spe-
cies

All species
 Whole-plant survival 20.44** 122.91*** 11.81
 Aboveground survival 38.05*** 217.27*** 25.23
 Relative growth rate 7.52** 2.75*** 1.09

Grasses
 Whole-plant survival 16.20** 74.71*** 9.37
 Aboveground survival 27.72*** 124.86*** 19.75
 Relative growth rate 11.27** 1.22 1.20

Forbs
 Whole-plant survival 3.54 34.92* 1.50
 Aboveground survival 20.68** 88.54*** 5.82
 Relative growth rate 4.49 4.09*** 1.02

(a)

(b)

Fig. 4  Tests for performance trade-offs across 40 perennial temper-
ate grassland species. Relations are shown a between growth under 
irrigated conditions and drought resistance of survival (RGR irrigated 
vs.  DRs.whole; test of ‘growth–stress tolerance’ trade-off hypothesis), 
and b between growth under irrigated and under dry conditions (RGR 
irrigated vs. RGR dry; test of ‘growth rates’ trade-off hypothesis). RGR is 
given as  cm2  cm−2  day−1 based on projected living leaf area. Signifi-
cant relations across all species are given as black solid lines, within 
forbs as green dashed lines (no significant relations for grasses). R2 
and significance levels are given as (*)P < 0.1, **P < 0.01. For rela-
tions of RGR irrigated to additional measures of drought tolerance see 
Table S5



1031Oecologia (2020) 192:1023–1036 

1 3

with previous studies, which reported reduced biomass 
productivity during drought, but high recovery after the 
drought for natural and experimental temperate grassland 
communities (Grime et al. 2008; Kreyling et al. 2008; Gil-
gen and Buchmann 2009; Vogel et al. 2012; Hofer et al. 
2016). Nevertheless, individual species responded differen-
tially to drought in terms of survival and growth. Differential 
responses of species to drought have been suggested to alter 
species distribution and the composition and diversity of 
grassland communities (Silvertown et al. 1999; Grime et al. 
2000; Hoover et al. 2014).

To our knowledge, this is the most extensive study that 
directly and experimentally assessed comparative whole-
plant responses of individual species in grasslands. It 
allowed for the first time to rigorously test trade-offs between 
performance parameters concerning drought, and the rela-
tion between species drought resistance and distributions 
across moisture gradients in temperate grassland species.

The performance of the species in our drought experiment 
does not necessarily reflect their performance under natural 
extreme drought events of comparable length, because the 
soil water status and the soil–atmosphere water potential gra-
dients that plants experience are highly dependent on actual 
weather conditions, soil characteristics and site hydrology. 
Nevertheless, the ranking of species drought damage and 
aboveground survival remained consistent across a wide 

range of drought durations, from those frequently occurring 
in the study area to ones exceeding 1000-year events (Fig. 2, 
Table S5). Thus, studies that assess comparative drought 
survival of perennial grassland species under moderate con-
ditions can be used to infer drought survival of individual 
species under more intense conditions even beyond those 
experienced under current climate conditions (compare 
Slette et al. 2019). The results imply that early leaf abscis-
sion is not a dominant survival strategy in temperate grass-
land species, which contrasts with Mediterranean grassland 
species (Volaire et al. 2009). They also suggest that previous 
studies, which evaluated the importance of traits for above-
ground survival, are also relevant at the whole-plant level 
(e.g., Belluau and Shipley 2017).

Furthermore, our results show that visually assessed 
drought damage (i.e., wilting and necrosis) after short 
drought periods (i.e., a few weeks) is a useful proxy for plant 
survival of longer drought in temperate grassland species, 
consistent with results in tropical seedlings (Engelbrecht 
et al. 2007b). The proxy can facilitate studying effects of 
extreme droughts on grassland species, e.g., for selecting 
species to improve grassland resilience to drought, for fur-
ther testing how species fundamental drought resistance 
translates into species abundance and distribution patterns, 
or for evaluating the importance of traits for drought sur-
vival. On the other hand, the ranking of species responses 

Fig. 5  Relations of species 
drought resistance with their 
distribution across moisture 
gradients. Results are given for 
a, b drought resistance with 
respect to whole-plant survival 
 (DRs.whole), and c, d with respect 
to growth  (DRgrowth). Distribu-
tion across moisture gradients 
is characterized at the local 
level based on a, c the Ellenberg 
F value (with larger values 
indicating moister conditions) 
and b, d at the large scale based 
on their median annual rainfall 
niche. None of the relations was 
significant (all P >> 0.1). The 
stippled areas in a and b illus-
trate that no drought-sensitive 
species were associated with 
dry habitats or exhibited low 
rainfall niches (see Fig. S5 for 
relations to 5th percentile, mean 
and 95th percentile rainfall 
niches)
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of relative growth rates was not related to those of visual 
damage or aboveground survival (Table S5). Competitive 
interactions may, therefore, change with drought duration 
or intensity, and impede inferring community responses to 
extreme drought events from studies under moderate drought 
conditions.

No performance trade‑offs with respect to drought

We found no indication for a trade-off between relative 
growth rates in the irrigated treatment and drought resist-
ance (‘growth–stress tolerance’ trade-off, Fig. 4a, Table S5) 
nor for a trade-off between relative growth rates in the irri-
gated and dry treatment (‘growth rates’ trade-off, Fig. 4b). 
This was despite a large (> fivefold) variation in growth rates 
of well-watered plants across species, as well as extreme 
drought conditions. Some trends were even in the opposite 
direction to the hypotheses.

Although the lack of trade-offs was unexpected, it was 
indeed consistent with previous studies at the whole-plant 
level in relatively small species sets (Fernández and Reyn-
olds 2000; Zwicke et al. 2015). Indirect evidence for the 
‘growth–stress tolerance’ trade-off had been previously been 
provided by a positive relationship between species moisture 
association with relative growth rates in temperate grass-
land species (Bartelheimer and Poschlod 2016) and tropi-
cal woody seedlings (Gaviria et al. 2017). At the trait level, 
evidence for a trade-off between some traits enabling fast 
growth and proxies of drought resistance was also reported 
for grassland species (Craine et al. 2013),  C4 grasses (Ochel-
tree et al. 2016), and woody species (Reich 2014 and refer-
ences therein).

Plants cope with drought through various different pro-
cesses such as minimizing water loss, maximizing water 
uptake and transport, and maintaining carbon gain (Choat 
et al. 2018). Morphological, anatomical, and physiological 
traits that are relevant for these processes not only can be 
positively correlated among each other or trade-off, but also 
can vary independently (Tucker et al. 2011; Zwicke et al. 
2015). Also, many relevant traits exhibit phenotypic plastic-
ity in response to varying soil moisture (Jung et al. 2014; de 
Vries et al. 2016). The various processes involved in growth 
and drought resistance, as well as the complexities in trait 
relations and plasticity, may lead to the independent varia-
tion of species drought resistance and maximum growth rate 
at the whole-plant level.

A ‘growth rates’ trade-off indicated by performance 
rank reversals across resource gradients has been hypoth-
esized and should lead to shifts of competitive hierarchies 
(Latham 1992). In contrast, we found that species growth 
rates in the dry and irrigated treatments were independent 
of each other in grasses, and were even positively related 
in forbs and across all species. Studies testing the ‘growth 

rates’ trade-off hypothesis in grassland species found a rank 
reversal under nutrient-rich vs. nutrient-poor conditions, but 
not under different water and light conditions (Reader et al. 
1993; Meziane and Shipley 1999). Studies on woody species 
concerning drought or shade (Dalling et al. 2004; Baraloto 
et al. 2006; Kitajima and Poorter 2008) and on herbaceous 
wetland species regarding nutrients (Keddy et al. 2000) also 
found no evidence of consistent rank reversals of growth 
rates across resource levels.

The lack of a ‘growth–stress tolerance’ or ‘growth rates’ 
trade-off with respect to drought implies that these perfor-
mance trade-offs cannot be the dominant drivers of hydro-
logical niche differentiation or maintenance of diversity 
in temperate grasslands, and that instead other factors are 
more important (compare Silvertown et al. 2015). These 
may include nutrients or pest pressure, as well as temporal 
fluctuations in limiting factors (i.e., storage effect), com-
petition–defense trade-offs or negative density dependence 
(Harpole and Tilman 2007; Chesson and Kuang 2008; Adler 
et al. 2013).

No relations of drought resistance to species 
moisture association

Species drought resistance is expected to shape their dis-
tribution across moisture gradients (e.g., Silvertown et al. 
1999; Hoover et al. 2014; Esquivel-Muelbert et al. 2017a). 
Relations of some physiological traits that are related to 
water relations and gas exchange with species’ habitat mois-
ture support this expectation (e.g., stomatal behavior; Tucker 
et al. 2011; Belluau and Shipley 2017; but see Májeková 
et al. 2019). Nevertheless, we found no indication that spe-
cies drought resistance was negatively related to moisture 
associations at the local or large scale (Fig. 5, Fig. S5).

The distribution of species with high drought resistance 
in terms of survival  (DRs.whole) reached into rather moist 
areas both at the local and large scales (Fig. 5, Fig S5). 
This implies that drought-resistant grassland species are 
not systematically excluded from moist areas by trade-offs 
against drought resistance (see the introduction, Gaviria 
et al. 2017), a result consistent with the observed lack of 
‘growth–drought tolerance’ or ‘growth rates’ trade-offs (see 
above).

On the dry side, no drought-sensitive species 
 (DRs.whole < 0.8) were associated with dry habitats (F 
values 3 and 4, Fig. 5a) or exhibited low rainfall niches 
(median < 700 mm year−1, 5th percentile < 550 mm year−1, 
Fig. 5b, Fig. S5a). Although this pattern was weak, it is 
consistent with drought directly excluding drought-sensitive 
species from dry habitats. Overall, however, our data sug-
gest that in temperate grassland species differences of their 
fundamental drought resistance are not a main driver of their 
distribution across moisture gradients.
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These results on temperate grassland species differ from 
findings from moist tropical forests, where species drought 
resistance had a pronounced direct effect on their distri-
bution along regional- and large-scale rainfall gradients 
(Engelbrecht et al. 2007a; Esquivel-Muelbert et al. 2017a), 
underlining that the relative importance of mechanisms 
for species distributions differs across ecosystems. How-
ever, consistent with our results, drought-resistant species 
were also not excluded from wet areas, indicating that any 
potential trade-offs of drought resistance with other factors 
(e.g., growth rates or shade tolerance) were similarly weak 
(Esquivel-Muelbert et al. 2017b).

Besides the direct interplay between plant drought resist-
ance and moisture, various additional factors that co-vary 
with water availability can limit the distribution of individ-
ual species along moisture gradients. Complex interactions 
of drought resistance with other resource requirements or 
tolerances can also accelerate or dampen effects of water 
availability (e.g., Eskelinen and Harrison 2015). For exam-
ple, high nitrogen requirements may limit the distribution of 
a drought-resistant species to water regimes that are suitable 
for high microbial nitrogen mineralization rates and at the 
same time allow high nitrogen uptake with the transpiration 
stream (Araya et al. 2013). Additionally, plant–plant inter-
actions, i.e., competition and facilitation, are known to play 
an important role in the performance of grassland species 
across moisture gradients and to influence species distribu-
tions (e.g., Brooker et al. 2008). Thus, multiple processes 
operate simultaneously to structure species realized distri-
bution and plant communities along this resource gradient 
(Spasojevic and Suding 2012).

Nevertheless, existing relations between species drought 
resistance and moisture associations may have been obscured 
in our data because both available measures of species mois-
ture associations are coarse. The local-scale classification 
of habitat association is non-quantitative (Ellenberg et al. 
1991). The large-scale rainfall niche, although quantitative, 
has a low spatial resolution (1 km2) and thus does not allow 
resolving the often substantial small-scale variation of soil 
moisture (e.g., with topography or soil). Additionally, both 
measures do not refer to soil water potentials, the param-
eter ultimately relevant for plant water relations (Lambers 
et al. 2007). To further advance our understanding of the 
importance of species fundamental drought resistance for 
their realized distribution across moisture gradients in grass-
lands, and to differentiate it from other factors, we ideally 
need species quantitatively assessed abundance changes in 
response to the spatial and temporal variation of soil water 
potentials. However, such data are rarely available (but see 
Kupers et al. 2019).

Experimentally assessed comparative whole-plant 
drought resistance, as we present in this study for temperate 
grassland species, provides a basis to further examine the 

processes that shape community composition and species 
distributions under different moisture regimes. Especially 
combining the drought resistance of individual species with 
their responses to drought in community-level experiments 
or in natural communities (e.g., Tilman and El Haddi 1992; 
Bütof et al. 2012; Isbell et al. 2015; Herz et al. 2017) will 
help to elucidate the various interacting factors. Comparative 
assessments are also a prerequisite for rigorously testing the 
importance of traits and trait combinations for whole-plant 
drought resistance (Shipley et al. 2016). They will, therefore, 
contribute to improving projections of the consequences of 
changing moisture regimes for grasslands under climate 
change.
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