12,926 research outputs found
Time-Reversal-Violating Schiff Moment of 199Hg
We calculate the Schiff moment of the nucleus 199Hg, created by pi-N-N
vertices that are odd under parity (P) and time-reversal (T). Our approach,
formulated in diagrammatic perturbation theory with important core-polarization
diagrams summed to all orders, gives a close approximation to the expectation
value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state
generated by a Skyrme interaction and a weak P- and T-odd pion-exchange
potential. To assess the uncertainty in the results, we carry out the
calculation with several Skyrme interactions (the quality of which we test by
checking predictions for the isoscalar-E1 strength distribution in 208Pb) and
estimate most of the important diagrams we omit.Comment: 13 pages, 7 figure
Mesoscopic Spin-Hall Effect in 2D electron systems with smooth boundaries
Spin-Hall effect in ballistic 2D electron gas with Rashba-type spin-orbit
coupling and smooth edge confinement is studied. We predict that the interplay
of semiclassical electron motion and quantum dynamics of spins leads to several
distinct features in spin density along the edge that originate from
accumulation of turning points from many classical trajectories. Strong peak is
found near a point of the vanishing of electron Fermi velocity in the lower
spin-split subband. It is followed by a strip of negative spin density that
extends until the crossing of the local Fermi energy with the degeneracy point
where the two spin subbands intersect. Beyond this crossing there is a wide
region of a smooth positive spin density. The total amount of spin accumulated
in each of these features exceeds greatly the net spin across the entire edge.
The features become more pronounced for shallower boundary potentials,
controlled by gating in typical experimental setups.Comment: 4 pages, 4 figures, published versio
Comment: Superconducting transition in Nb nanowires fabricated using focused ion beam
In a recent paper Tettamanzi et al (2009 Nanotechnology \bf{20} 465302)
describe the fabrication of superconducting Nb nanowires using a focused ion
beam. They interpret their conductivity data in the framework of thermal and
quantum phase slips below . In the following we will argue that their
analysis is inappropriate and incomplete, leading to contradictory results.
Instead, we propose an interpretation of the data within a SN proximity model.Comment: 3 pages, 1 figure accepted in Nanotechnolog
Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003
During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%
Neutron-proton pairing in the BCS approach
We investigate the BCS treatment of neutron-proton pairing involving
time-reversed orbits. We conclude that an isospin-symmetric hamiltonian,
treated with the help of the generalized Bogolyubov transformation, fails to
describe the ground state pairing properties correctly. In order for the np
isovector pairs to coexist with the like-particle pairs, one has to break the
isospin symmetry of the hamiltonian by artificially increasing the strength of
np pairing interaction above its isospin symmetric value. We conjecture that
the np isovector pairing represents part (or most) of the congruence energy
(Wigner term) in nuclear masses.Comment: 9 pages, RevTex, submitted to Phys. Rev.
Neutron-Proton Correlations in an Exactly Solvable Model
We examine isovector and isoscalar neutron-proton correlations in an exactly
solvable model based on the algebra SO(8). We look particularly closely at
Gamow-Teller strength and double beta decay, both to isolate the effects of the
two kinds of pairing and to test two approximation schemes: the renormalized
neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing
correlations become strong enough a phase transition occurs and the dependence
of the Gamow-Teller beta+ strength on isospin changes in a dramatic and
unfamiliar way, actually increasing as neutrons are added to an N=Z core.
Renormalization eliminates the well-known instabilities that plague the QRPA as
the phase transition is approached, but only by unnaturally suppressing the
isoscalar correlations. Generalized BCS theory, on the other hand, reproduces
the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally
good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar
side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe
Efficient total energy calculations from self-energy models
We propose a new method for calculating total energies of systems of interacting electrons, which requires little more computational resources than standard density-functional theories. The total energy is calculated within the framework of many-body perturbation theory by using an efficient model of the self-energy, that nevertheless retains the main features of the exact operator. The method shows promising performance when tested against quantum Monte Carlo results for the linear response of the homogeneous electron gas and structural properties of bulk silicon
Correlations between hidden units in multilayer neural networks and replica symmetry breaking
We consider feed-forward neural networks with one hidden layer, tree
architecture and a fixed hidden-to-output Boolean function. Focusing on the
saturation limit of the storage problem the influence of replica symmetry
breaking on the distribution of local fields at the hidden units is
investigated. These field distributions determine the probability for finding a
specific activation pattern of the hidden units as well as the corresponding
correlation coefficients and therefore quantify the division of labor among the
hidden units. We find that although modifying the storage capacity and the
distribution of local fields markedly replica symmetry breaking has only a
minor effect on the correlation coefficients. Detailed numerical results are
provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and
nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.
Neutralino Inelastic Scattering with Subsequent Detection of Nuclear Gamma Rays
We consider the potential benefits of searching for supersymmetric
dark-matter through its inelastic excitation, via the "scalar current", of
low-lying collective nuclear states in a detector. If such states live long
enough so that the gamma radiation from their decay can be separated from the
signal due to nuclear recoil, then background can be dramatically reduced. We
show how the kinematics of neutralino-nucleus scattering is modified when the
nucleus is excited and derive expressions for the form factors associated with
exciting collective states. We apply these results to two specific cases: 1)
the 5/2^+ state at 13 keV in 73Ge, and 2) the rotational and hence very
collective state 3/2^+ at 8 keV in 169Tm (even though observing the transition
down from that state will be difficult). In both cases we compare the form
factors for inelastic scattering with those for elastic scattering. The
inelastic cross section is considerably smaller than its elastic counterpart,
though perhaps not always prohibitively so.Comment: 7 pages, 1 figure in text, late
- …