139 research outputs found

    Wigner crystalization about ν\nu=3

    Full text link
    We measure a resonance in the frequency dependence of the real diagonal conductivity, Re[σxx\sigma_{xx}], near integer filling factor, ν=3\nu=3. This resonance depends strongly on ν\nu, with peak frequency fpk≈1.7f_{pk} \approx 1.7 GHz at ν=3.04\nu=3.04 or 2.92 close to integer ν\nu, but fpk≈f_{pk} \approx 600 MHz at ν=3.19\nu=3.19 or 2.82, the extremes of where the resonance is visible. The dependence of fpkf_{pk} upon n∗n^*, the density of electrons in the partially filled level, is discussed and compared with similar measurments by Chen {\it et al.}\cite{yong} about ν=1\nu=1 and 2. We interpret the resonance as due to a pinned Wigner crystal phase with density n∗n^* about the ν=3\nu=3 state.Comment: for proceedings of EP2DS-15 (Nara) to appear in Physica

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T≳0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex

    A Farewell to Liouvillians

    Full text link
    We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62}, 2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87}, 046801 (2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian perturbation theory and conventional calculations of disorder-averaged products of Green functions and show that each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green function. As a consequence, any Liouvillian approximation scheme may be re-expressed in the language of Green functions. We illustrate these ideas by applying Liouvillian methods, including their extension to NL>1N_L > 1 Liouvillian flavors, to random matrix ensembles, using numerical calculations for small integer NLN_L and an analytic analysis for large NLN_L. We find that behavior at NL>1N_L > 1 is different in qualitative ways from that at NL=1N_L=1. In particular, the NL=∞N_L = \infty limit expressed using Green functions generates a pathological approximation, in which two-particle correlation functions fail to factorize correctly at large separations of their energy, and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large NLN_L treatment of the quantum Hall plateau transition, showing that the same undesirable features are present there, too

    Thermodynamic and Tunneling Density of States of the Integer Quantum Hall Critical State

    Full text link
    We examine the long wave length limit of the self-consistent Hartree-Fock approximation irreducible static density-density response function by evaluating the charge induced by an external charge. Our results are consistent with the compressibility sum rule and inconsistent with earlier work that did not account for consistency between the exchange-local-field and the disorder potential. We conclude that the thermodynamic density of states is finite, in spite of the vanishing tunneling density of states at the critical energy of the integer quantum Hall transition.Comment: 5 pages, 4 figures, minor revisions, published versio

    Measurements of the Composite Fermion masses from the spin polarization of 2-D electrons in the region 1<ν<21<\nu<2

    Full text link
    Measurements of the reflectivity of a 2-D electron gas are used to deduce the polarization of the Composite Fermion hole system formed for Landau level occupancies in the regime 1<\nu<2. The measurements are consistent with the formation of a mixed spin CF system and allow the density of states or `polarization' effective mass of the CF holes to be determined. The mass values at \nu=3/2 are found to be ~1.9m_{e} for electron densities of 4.4 x 10^{11} cm^{-2}, which is significantly larger than those found from measurements of the energy gaps at finite values of effective magnetic field.Comment: 4 pages, 3 fig

    Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet

    Full text link
    We study spin textures in a quantum Hall Ising ferromagnet. Domain walls between ferro and unpolarized states at ν=2\nu=2 are analyzed with a functional theory supported by a microscopic calculation. In a neutral wall, Hartree repulsion prevents the appearance of a fan phase provoked by a negative stiffness. For a charged system, electrons become trapped as solitons at the domain wall. The size and energy of the solitons are determined by both Hartree and spin-orbit interactions. Finally, we discuss how electrical transport takes place through the domain wall.Comment: 4 pages, 3 figures include

    Net Charge on a Noble Gas Atom Adsorbed on a Metallic Surface

    Full text link
    Adsorbed noble gas atoms donate (on the average) a fraction of an electronic charge to the substrate metal. The effect has been experimentally observed as an adsorptive change in the electronic work function. The connection between the effective net atomic charge and the binding energy of the atom to the metal is theoretically explored.Comment: ReVvTeX 3.1 format, Two Figures, Three Table

    Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass

    Full text link
    Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T pulsed magnetic fields. The CF effective mass is found to increase approximately linearly with the effective field B∗B^*, in agreement with our earlier work at lower fields. For a B∗B^* of 14 T it reaches 1.6me1.6m_e, over 20 times the band edge electron mass. Data from all fractions are unified by the single parameter B∗B^* for all the samples studied over a wide range of electron densities. The energy gap is found to increase like B∗\sqrt{B^*} at high fields.Comment: Has final table, will LaTeX without error

    Short-Range Interactions and Scaling Near Integer Quantum Hall Transitions

    Full text link
    We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the non-interacting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but non-zero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency, ω\omega, and temperature, TT, is determined by the scaling variable ω/Tp\omega/T^p (where pp is the exponent for the temperature dependence of the inelastic scattering rate) and not by ω/T\omega/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent, pp, and the thermal exponent, zTz_T, in terms of the scaling dimension, −α<0-\alpha < 0, of the interaction strength and the dynamical exponent zz (which has the value z=2z=2), obtaining p=1+2α/zp=1+2\alpha/z and zT=2/pz_T=2/p.Comment: 9 pages, 4 figures, submitted to Physical Review

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around ν=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques
    • …
    corecore