9,018 research outputs found

    Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    Get PDF
    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs

    Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    Get PDF
    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved

    Free Speech Coalition v. Reno: Has the Ninth Circuit Given Child Pornographers a New Tool to Exploit Children?

    Get PDF

    Coverage-dependent adsorption sites for K/Cu(001) and Cs/Cu(001) determined by surface X-ray diffraction

    Get PDF
    Surface X-ray diffraction has been used to analyze in situ the room-temperature adsorption behaviour and the structure of K and Cs on Cu(100) at submonolayer coverages. Adsorption of K takes place in fourfold hollow sites up to coverages of about 0.25 monolayers (ML), where 1 ML corresponds to 1.53 × 1015 atoms/cm2. At higher coverages the formation of a quasi-hexagonal incommensurate adlayer is observed. In contrast, for Cs adsorption we observe from the very beginning the formation of the quasi-hexagonal structure up to the completion of the adlayer at about 0.30 ML. For K adsorption in the hollow sites we determine an adsorption height, d = 2.25(15) Å, corresponding to an effective K radius of reff = 1.6(1) Å close to the ionic radius of 1.33 Å. We do not observe a change in the effective radius as a function of coverage. For the quasi-hexagonal Cs structure we find an (average) adsorption height d = 2.94 Å corresponding to an effective radius of reff = 2.18 and 1.93 Å, for the limiting ca hollow- and bridge-site adsorption, respectively. The analysis of the superlattice reflections corresponding to the quasi-hexagonal incommensurate structures indicated that the K adlayer is strongly modulated. The first Fourier component of the substrate-induced modulation was determined to u01 = 1.29(3) Å. In contrast, for Cs/Cu(001) static modulation is much less important (u01 0.2 Å). Variation of the Cs adlayer density by changing the substrate temperature allows continuous expansion and contraction of the adsorbate unit cell. No commensurate-incommensurate transition has been observed

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Parametric study of cavity length and mirror reflectivity in ultralow threshold quantum well InGaAs/AlGaAs lasers

    Get PDF
    Record low CW threshold currents of 16 μA at-room temperature and 21 μA at cryogenic temperature have been demonstrated in buried heterostructure strained layer, single quantum well InGaAs/AlGaAs lasers with a short cavity length and high reflectivity coatings
    corecore