7,239 research outputs found

    Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    Get PDF
    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved

    Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    Get PDF
    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs

    High mobility two-dimensional electron system on hydrogen-passivated silicon(111) surfaces

    Full text link
    We have fabricated and characterized a field-effect transistor in which an electric field is applied through an encapsulated vacuum cavity and induces a two-dimensional electron system on a hydrogen-passivated Si(111) surface. This vacuum cavity preserves the ambient sensitive surface and is created via room temperature contact bonding of two Si substrates. Hall measurements are made on the H-Si(111) surface prepared in aqueous ammonium fluoride solution. We obtain electron densities up to 6.5×10116.5 \times 10^{11} cm2^{-2} and peak mobilities of 8000\sim 8000 cm2^{2}/V s at 4.2 K.Comment: to appear in Applied Physics Letter

    Seller versus Broker: Timing of Promotion

    Get PDF
    Sellers and brokers may differ in preferred timing of costly promotion. Sellers with holding costs are anxious to sell. Sellers with showing costs want a slower approach. We find a standard listing contract where the broker chooses promotion timing can be efficient if sellers have no significant holding or showing costs. We then delineate the efficient listing contract provisions for duration and fee structure for sellers who have holding and/or showing costs.

    Transportation Safety Law Practice Manual

    Get PDF

    Integer quantum Hall effect on a six valley hydrogen-passivated silicon (111) surface

    Full text link
    We report magneto-transport studies of a two-dimensional electron system formed in an inversion layer at the interface between a hydrogen-passivated Si(111) surface and vacuum. Measurements in the integer quantum Hall regime demonstrate the expected sixfold valley degeneracy for these surfaces is broken, resulting in an unequal occupation of the six valleys and anisotropy in the resistance. We hypothesize the misorientation of Si surface breaks the valley states into three unequally spaced pairs, but the observation of odd filling factors, is difficult to reconcile with non-interacting electron theory.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines
    corecore