24 research outputs found

    Critical factors for the performance of chip array-based electrical detection of DNA for analysis of pathogenic bacteria

    Get PDF
    Different factors influencing chip array-based electrical detection of DNA for analysis of pathogenic bacteria were examined. Both rehydration of capture probe layer of functionalized chip arrays and efficient hybridization of targets irrespective of their length resulted in signal enhancement when high-ionic phosphate-buffered saline (i.e., 600 mM sodium chloride and 40 mM disodium hydrogen phosphate) was used. Similarly, placement of two adjacent capture and detection probe-binding sites at a terminal part of the target strand resulted in significant signal increase. Moreover, 10-min ultrasonic fragmentation of targets amplified the signals up to twofold for longer DNA strands (i.e., >300 bp). No obvious effects on signals were visible for shorter than 400-bp PCR amplicons subjected to ultrasonication. For DNA strands of all sizes, more than 10 min ultrasonication diminished the specific electrical responses. Our results also demonstrate that target analytes are detected with discrimination against mismatches even for single nucleotide sequence alteration. The mismatch detection appeared in order of ease of recognition as follows: triple random > quintuple middle > triple middle > single middle mismatch. Among the three variants of one-base mismatches, a sequence variation was most remarkable for adenine. On the other hand, no benefits in assay sensitivity were recognized by the use of longer capture probe linkers as the 6-C linker

    Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures

    Get PDF
    BACKGROUND: A temperature limited fed-batch (TLFB) technique is described and used for Pichia pastoris Mut(+ )strain cultures and compared with the traditional methanol limited fed-batch (MLFB) technique. A recombinant fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A and lipase B from Candida antarctica (CALB), was produced and secreted by this strain. RESULTS: A protein concentration of about 1 g L(-1 )was produced in the MLFB process. However, this product was considerably degraded by protease(s). By applying the TLFB process, the yield was increased to 2 g L(-1 )full-length product and no proteolytic degradation was observed. Flow cytometry analysis showed that the percentage of dead cells increased rapidly during the initial methanol feed phase in the MLFB process and reached a maximum of about 12% after about 40–70 hours of methanol feeding. In the TLFB process, cell death rate was low and constant and reached 4% dead cells at the end of cultivation (about 150 hours methanol feeding time). The lower cell death rate in the TLFB correlated with a lower protease activity in the culture supernatant. The specific alcohol oxidase (AOX) activity in the TLFB process was 3.5 times higher than in the MLFB process. CONCLUSION: Three mechanisms that may contribute to the much higher accumulation of product in the TLFB process are: 1) reduced proteolysis due to lower temperature, 2) reduced proteolysis due to lower cell death and protease release to the medium, 3) increased synthesis rate due to higher AOX activity

    Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip

    Get PDF
    BACKGROUND: Bacillus cereus constitutes a significant cause of acute food poisoning in humans. Despite the recent development of different detection methods, new effective control measures and better diagnostic tools are required for quick and reliable detection of pathogenic micro-organisms. Thus, the objective of this study was to determine a simple method for rapid identification of enterotoxic Bacillus strains. Here, a special attention is given to an electrochemical biosensor since it meets the requirements of minimal size, lower costs and decreased power consumption. RESULTS: A bead-based sandwich hybridization system was employed in conjugation with electric chips for detection of vegetative cells and spores of Bacillus strains based on their toxin-encoding genes. The system consists of a silicon chip based potentiometric cell, and utilizes paramagnetic beads as solid carriers of the DNA probes. The specific signals from 20 amol of bacterial cell or spore DNA were achieved in less than 4 h. The method was also successful when applied directly to unpurified spore and cell extract samples. The assay for the haemolytic enterotoxin genes resulted in reproducible signals from B. cereus and B. thuringiensis while haemolysin-negative B. subtilis strain did not yield any signal. CONCLUSIONS: The sensitivity, convenience and specificity of the system have shown its potential. In this respect an electrochemical detection on a chip enabling a fast characterization and monitoring of pathogens in food is of interest. This system can offer a contribution in the rapid identification of bacteria based on the presence of specific genes without preceding nucleic acid amplification

    Confirmative electric DNA array-based test for food poisoning Bacillus cereus

    Get PDF
    Detection of the full set of toxin encoding genes involved in gastrointestinal diseases caused by B. cereus was performed. Eight genes determining the B. cereus pathogenicity, which results in diarrhea or emesis, were simultaneously evaluated on a 16-position electrical chip microarray. The DNA analyte preparation procedure comprising first 5 min of ultrasonic treatment, DNA extraction, and afterwards an additional 10 min sonication, was established as the most effective way of sample processing. No DNA amplification step prior to the analysis was included. The programmed assay was carried out within 30 min, once theDNAanalyte from 108 bacterial cells, corresponding to one agar colony, was subjected to the assay. In general, this work represents a mature analytical way for DNA review. It can be used under conditions that require almost immediate results

    Gene-based identifcation of bacterial colonies with an electric chip

    Get PDF
    A method for the identiWcation of bacterial colonies based on their content of speciWc genes is presented. This method does not depend on DNA separation or DNA ampliWcation. Bacillus cereus carrying one of the genes (hblC) coding for the enterotoxin hemolysin was identiWed with this method. It is based on target DNA hybridization to a capturing probe immobilized on magnetic beads, followed by enzymatic labeling and measurement of theenzyme product with a silicon-based chip. An hblC-positive colony containing 107 cells could be assayed in 30 min after ultrasonication and centrifugation. The importance of optimizing the ultrasonication is illustrated by analysis of cell disruption kinetics and DNA fragmentation. An early endpoint PCR analysis was used to characterize the DNA fragmentation as a function of ultrasonication time. The Wrst minutes of sonication increased the signal due to both increased DNA release and increased DNA fragmentation. The latter is assumed to increase the signal due to improved diVusion and faster hybridization of the target DNA. Too long sonication decreased the signal, presumably due to loss of hybridization sites on the targets caused by extensive DNA fragmentation. The results form a basis for rational design of an ultrasound cell disruption system integrated with analysis on chip that will move nucleic acid-based detection through real-time analysis closer to reality

    Recent advances on an electric silicon based chip for analysis of nucleic acids

    Get PDF
    Recently, several innovative designs for nucleic acid-based electrochemical sensing have appeared. These types of sensors combine nucleic acid layers with electrochemical transducers to produce a biochip

    Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC)

    Get PDF
    BACKGROUND: Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. RESULTS: A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC) on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated colonies. The sample processing comprises first 2.5 min of ultrasonic treatment, DNA extraction (2x), and afterwards additional 5 min ultrasonication. Thus, the total sample preparation time for a confirmative analysis of EHEC is nearly 10 min. Additionally, bioinformatic revisions were performed in order to design PCR primers and array probes specific to most conservative regions of the EHEC-associated genes. Six strains with distinct pathogenic properties were selected for this study. At last, the EHEC chip array for a parallel and simultaneous detection of genes etpC-stx1-stx2-eae was designed and examined. This should permit to sense all currently accessible variants of the selected sequences in EHEC types and subtypes. CONCLUSION: In order to implement the DNA chip array-based analysis for direct EHEC detection the sample processing was established in course of this work. However, this sample preparation mode may also be applied to other types of EHEC DNA-based sensing systems
    corecore