37 research outputs found

    Training 4-H Teen Facilitators in Inquiry-Based Science Methods: The Evaluation of a Step-Up Incremental Training Model

    Get PDF
    A Step-Up Incremental Training Model for teen curriculum facilitators implementing inquiry-based science activities was designed and evaluated. This model involves a sequence of three training workshops that alternate with curriculum implementations. The model was evaluated using data from focus group interviews, surveys, and direct observations. Key elements in the model\u27s design include: workshop organization; introductory session; multiple increments; effective modeling and practice; safe environment for reflection and review. The teens trained during the development of this model were effective in implementing curriculum activities with young children. The authors believe that this method would be transferable to other teen-led Extension programs

    The Development and Evaluation of Experiential Learning Workshops for 4-H Volunteers

    Get PDF
    A series of three Experiential Learning (EL) workshops was designed by county- and campus-based researchers with the goal of improving the understanding and application of EL among volunteers in the University of California\u27s 4-H Youth Development Program. The workshop series was implemented and evaluated using surveys and focus group interviews. Outcome data showed improved participant understanding of EL, the learning cycle, inquiry-based methods, and curriculum development. Additionally, volunteers\u27 competence and confidence in delivering and developing experiential learning opportunities increased

    Improving County-Based Science Programs: Bringing Out the Science Teacher in Your Volunteer Leaders

    Get PDF
    4-H programs can play an important role in increasing children\u27s exposure to, and interest in, science. To be effective, however, specialized training for volunteer leaders is needed. A method of training adult volunteer leaders to train 4-H teens to be cross-age teachers of an inquiry-based science program was designed and evaluated. Key components of this method were specific scaffolding strategies, including modeling, coaching, effective questioning, promoting group interactions, and encouraging independent investigation and thinking. Data from focus group interviews and quantitative measures showed improvement at all levels of project involvement: Adult volunteer leaders, 4-H teens, and participating 4-H youth

    Global economic impacts of climate variability and change during the 20th century

    Get PDF
    Estimates of the global economic impacts of observed climate change during the 20th century obtained by applying five impact functions of different integrated assessment models (IAMs) are separated into their main natural and anthropogenic components. The estimates of the costs that can be attributed to natural variability factors and to the anthropogenic intervention with the climate system in general tend to show that: 1) during the first half of the century, the amplitude of the impacts associated with natural variability is considerably larger than that produced by anthropogenic factors and the effects of natural variability fluctuated between being negative and positive. These non-monotonic impacts are mostly determined by the low-frequency variability and the persistence of the climate system; 2) IAMs do not agree on the sign (nor on the magnitude) of the impacts of anthropogenic forcing but indicate that they steadily grew over the first part of the century, rapidly accelerated since the mid 1970's, and decelerated during the first decade of the 21st century. This deceleration is accentuated by the existence of interaction effects between natural variability and natural and anthropogenic forcing. The economic impacts of anthropogenic forcing range in the tenths of percentage of the world GDP by the end of the 20th century; 3) the impacts of natural forcing are about one order of magnitude lower than those associated with anthropogenic forcing and are dominated by the solar forcing; 4) the interaction effects between natural and anthropogenic factors can importantly modulate how impacts actually occur, at least for moderate increases in external forcing. Human activities became dominant drivers of the estimated economic impacts at the end of the 20th century, producing larger impacts than those of low-frequency natural variability. Some of the uses and limitations of IAMs are discussed

    Evolutionary characterization of lung adenocarcinoma morphology in TRACERx

    Get PDF
    Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource

    Genomic–transcriptomic evolution in lung cancer and metastasis

    Get PDF
    Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse
    corecore