426 research outputs found

    Building a corpus of spontaneous interaction

    No full text
    This revised version supersedes all previous versions (e.g., Field Manual 2010)

    Evidence of multidecadal salinity variability in the eastern tropical North Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA3010, doi:10.1029/2005PA001257.Ocean circulation and global climate are strongly influenced by seawater density, which is itself controlled by salinity and temperature. Although adequate instrumental sea-surface temperature (SST) records exist for most of the surface oceans over the past 100-150 years, records of salinity really only exist for the last 40-50 years. Here we show that longer proxy records from corals (Siderastrea radians) in the eastern tropical North Atlantic are dominated by multi-decadal variations in salinity which are correlated with the relationship between SST and the North Atlantic Oscillation (NAO) over the course of the 20th century. The data reveal an increase in eastern tropical North Atlantic salinity of +0.5 psu between about 1950-1990. Rather than a monotonic secular increase, as indicated by some instrumental records, the pre-instrumental coral proxy records presented here suggest that salinity in the tropical North Atlantic is periodic on a decadal to multi-decadal scale

    Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry.

    Get PDF
    Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells

    Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry

    Get PDF
    Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells

    The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 297 (2010): 299-310, doi:10.1016/j.palaeo.2010.08.009.A new 2400-year paleoclimate reconstruction from Chesapeake Bay (CB) (eastern US) was compared to other paleoclimate records in the North Atlantic region to evaluate climate variability during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Using Mg/Ca ratios from ostracodes and oxygen isotopes from benthic foraminifera as proxies for temperature and precipitation-driven estuarine hydrography, results show that warmest temperatures in CB reached 16–17 °C between 600 and 950 CE (Common Era), centuries before the classic European Medieval Warm Period (950–1100 CE) and peak warming in the Nordic Seas (1000–1400 CE). A series of centennial warm/cool cycles began about 1000 CE with temperature minima of ~ 8 to 9 °C about 1150, 1350, and 1650–1800 CE, and intervening warm periods (14–15 °C) centered at 1200, 1400, 1500 and 1600 CE. Precipitation variability in the eastern US included multiple dry intervals from 600 to 1200 CE, which contrasts with wet medieval conditions in the Caribbean. The eastern US experienced a wet LIA between 1650 and 1800 CE when the Caribbean was relatively dry. Comparison of the CB record with other records shows that the MCA and LIA were characterized by regionally asynchronous warming and complex spatial patterns of precipitation, possibly related to ocean–atmosphere processes
    • 

    corecore