215 research outputs found

    How Do Spinal Surgeons Perceive The Impact of Factors Used in Post-Surgical Complication Risk Scores?

    Get PDF
    When deciding about surgical treatment options, an important aspect of the decision-making process is the potential risk of complications. A risk assessment performed by a spinal surgeon is based on their knowledge of the best available evidence and on their own clinical experience. The objective of this work is to demonstrate the differences in the way spine surgeons perceive the importance of attributes used to calculate risk of post-operative and quantify the differences by building individual formal models of risk perceptions. We employ a preference-learning method - ROR-UTADIS - to build surgeon-specific additive value functions for risk of complications. Comparing these functions enables the identification and discussion of differences among personal perceptions of risk factors. Our results show there exist differences in surgeons\u27 perceived factors including primary diagnosis, type of surgery, patient\u27s age, body mass index, or presence of comorbidities

    Morphological and photoelectrochemical properties of porous, superimposed Au/TiO2 layers

    Get PDF
    Porous semiconducting ceramics deposited on a porous metallic film acting both as catalyst and electronic collector gave large photocurrents and considerably enhanced electrooxidation currents when irradiated in the presence of small amounts of alcohol vapours. The morphological properties of these layered materials, was studied by electron (SEM, ESEM) and atomic force (AFM) microscopy in order to observe the modification in shape and size of the precursor particles because such knowledge is helpful to the preparation of suitable anodes for photo-assisted processes in the gas-phase

    Evolution of Coordination in Social Networks: A Numerical Study

    Get PDF
    Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP

    Ideating Mobile Health Behavioral Support for Compliance to Therapy for Patients with Chronic Disease: A Case Study of Atrial Fibrillation Management

    Get PDF
    Poor patient compliance to therapy results in a worsening condition that often increases healthcare costs. In the MobiGuide project, we developed an evidence-based clinical decision-support system that delivered personalized reminders and recommendations to patients, helping to achieve higher therapy compliance. Yet compliance could still be improved and therefore building on the MobiGuide project experience, we designed a new component called the Motivational Patient Assistant (MPA) that is integrated within the MobiGuide architecture to further improve compliance. This component draws from psychological theories to provide behavioral support to improve patient engagement and thereby increasing patients\u27 compliance. Behavior modification interventions are delivered via mobile technology at patients\u27 home environments. Our approach was inspired by the IDEAS (Integrate, Design, Assess, and Share) framework for developing effective digital interventions to change health behavior; it goes beyond this approach by extending the Ideation phase\u27 concepts into concrete backend architectural components and graphical user-interface designs that implement behavioral interventions. We describe in detail our ideation approach and how it was applied to design the user interface of MPA for anticoagulation therapy for the atrial fibrillation patients. We report results of a preliminary evaluation involving patients and care providers that shows the potential usefulness of the MPA for improving compliance to anticoagulation therapy

    A Health eLearning Ontology and Procedural Reasoning Approach for Developing Personalized Courses to Teach Patients about Their Medical Condition and Treatment

    Get PDF
    We propose a methodological framework to support the development of personalized courses that improve patients’ understanding of their condition and prescribed treatment. Inspired by Intelligent Tutoring Systems (ITSs), the framework uses an eLearning ontology to express domain and learner models and to create a course. We combine the ontology with a procedural reasoning approach and precompiled plans to operationalize a design across disease conditions. The resulting courses generated by the framework are personalized across four patient axes—condition and treatment, comprehension level, learning style based on the VARK (Visual, Aural, Read/write, Kinesthetic) presentation model, and the level of understanding of specific course content according to Bloom’s taxonomy. Customizing educational materials along these learning axes stimulates and sustains patients’ attention when learning about their conditions or treatment options. Our proposed framework creates a personalized course that prepares patients for their meetings with specialists and educates them about their prescribed treatment. We posit that the improvement in patients’ understanding of prescribed care will result in better outcomes and we validate that the constructs of our framework are appropriate for representing content and deriving personalized courses for two use cases: anticoagulation treatment of an atrial fibrillation patient and lower back pain management to treat a lumbar degenerative disc condition. We conduct a mostly qualitative study supported by a quantitative questionnaire to investigate the acceptability of the framework among the target patient population and medical practitioners

    Intention to leave, depersonalisation and job satisfaction in physicians and nurses: a cross-sectional study in Europe

    Get PDF
    The European healthcare sector faces a significant shortage of healthcare workers. Assessing the prevalence of this issue and understanding its direct and indirect determinants are essential for formulating effective recruitment programs and enhancing job retention strategies for physicians and nurses. A multicentric cross-sectional study was conducted, involving 381 physicians and 1351 nurses recruited from eight European hospitals in Belgium, the Netherlands, Italy, and Poland. The study focused on assessing turnover intentions among healthcare workers based on the Job Demands-Resources model, using an online questionnaire. Structural equation models were employed to test the data collection questionnaires' construct validity and internal consistency. The turnover intention was assessed by agreement with the intention to leave either the hospital or the profession. Among physicians, 17% expressed an intention to leave the hospital, while 9% intended to leave the profession. For nurses, the figures were 8.9% and 13.6%, respectively. The internal consistency of the questionnaires exceeded 0.90 for both categories of health workers. Depersonalization and job dissatisfaction were identified as direct determinants of turnover intention, with work engagement being particularly relevant for nurses. We found a higher intention to leave the hospital among physicians, while nurses were more prone to leave their profession. To mitigate turnover intentions, it is recommended to focus on improving job satisfaction, work engagement and fostering a positive working climate, thereby addressing depersonalisation and promoting job retention

    Abatement of an Azo Dye on Structured C-Nafion/Fe-Ion Surfaces by Photo-Fenton Reactions Leading to Carboxylate Intermediates with a Remarkable Biodegradability Increase of the Treated Solution

    Get PDF
    A novel C-Nafton/Fe-ion structured fabric capable of mediating Orange II decomposition in Fenton-immobilized photoassisted reactions is presented. The catalyst preparation requires the right balance between the amount of the Nafion necessary to protect the C-surface and the minimum encapsulation of the Fe-cluster catalytic sites inside the Nafion to allow the photocatalysis to proceed. The C-Nafion/Fe fabric can be used up to pH 10 under light to photocatalyze the disappearance of Orange II in the presence of H2O2. The photocatalysis mediated by the C-Nafion/Fe-ion fabric increased with the applied light intensity and reaction temperature in the reaction needing an activation energy of 9.8 kcal/mol. This indicates that ion- and radical-molecule reactions take place during Orange II disappearance. The build up and decomposition of intermediate iron complexes under light involves the recycling of Fe2+ and was detected by infrared spectroscopy (FTIR). This observation, along with other experimental results, allows us to suggest a surface mechanism for the dye degradation on the C-Nafion/Fe-ion fabrics. The C-Nafion/Fe-ion fabric in the presence of H2O2 under solar simulated light transforms the totally nonbiodegradable Orange II into a biocompatible material with a very high BOD5/COD value. X-ray photoelectron spectroscopy (XPS) and sputtering by Ar+-ions of the upper surface layer of the C-Nafion/Fe-ion fabric allow us to describe the intervention of the photocatalyst down to the molecular level. Most of the Fe clusters examined by transmission electron microscopy (TEM) showed particle sizes close to 4 nm due to their encapsulation into the Gierke cages of the Nafion thin film observed by scanning electron microscopy (SEM) and optical microscopy (OM)

    Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA

    Get PDF
    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an alpha/beta architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design.This work was supported by the European Commission Contract HEALTH-F3-2011-260872, the Spanish Ministry of Economy and Competitiveness Contract BIO2013-49022-C2-2-R, and the Basque Government (to M.E.G.); Slovak Research and Development Agency Contract No. DO7RP-0015-11 (to K.M.) and the NIH/NIAID grant AI064798 (to M.J.). D.A.-J. acknowledges the support from Fundacion Biofisica Bizkaia. We gratefully acknowledge Sonia Lopez-Fernandez (Unit of Biophysics, CSIC, UPV/EHU, Spain), Drs E. Ogando and T. Mercero (Scientific Computing Service UPV/EHU, Spain) for technical assistance. We thank the Swiss Light Source (SLS), and the Diamond Light Source (DLS) for granting access to synchrotron radiation facilities and their staff for the onsite assistance. We specially thank the BioStruct-X project to support access to structural biology facilities. We also acknowledge all members of the Structural Glycobiology Group (Spain) for valuable scientific discussions. The following reagent was obtained through BEI Resources, NIAID, NIH: Mycobacterium tuberculosis, Strain H37Rv, Purified Phosphatidylinositol Mannosides 1 and 2 (PIM1,2), NR-14846

    The statistics of voids as a tool to constrain cosmological parameters: sigma_8 and Omega_m h

    Full text link
    We present a general analytical formalism to calculate accurately several statistics related to underdense regions in the Universe. The statistics are computed for dark matter halo and galaxy distributions both in real space and redshift space at any redshift. Using this formalism, we found that void statistics for galaxy distributions can be obtained, to a very good approximation, assuming galaxies to have the same clustering properties as halos above a certain mass. We deducted a relationship between this mass and that of halos with the same accumulated number density as the galaxies. We also found that the dependence of void statistics on redshift is small. For instance, the number of voids larger than 13 Mpc/h (defined to not contain galaxies brighter than M_r=-20.4 +5logh change less than 20% between z=1 and z=0. However, the dependence of void statistics on sigma_8 and Omega_m h is considerably larger, making them appropriate to develop tests to measure these parameters. We have shown how to efficiently construct several of these tests and discussed in detail the treatment of several observational effects. The formalism presented here along with the observed statistics extracted from current and future large galaxy redshift surveys will provide an independent measurement of the relevant cosmological parameters. Combining these measurements with those found using other methods will contribute to reduce their uncertainties.Comment: 17 pages, 4 figures, submitted to MNRA
    corecore