10 research outputs found

    miR-150-PTPMT1-cardiolipin signaling in pulmonary arterial hypertension.

    Get PDF
    Circulating levels of endothelial miR-150 are reduced in pulmonary arterial hypertension (PAH) and act as an independent predictor of patient survival, but links between endothelial miR-150 and vascular dysfunction are not well understood. We studied the effects of endothelial miR-150 supplementation and inhibition in PAH mice and cells from patients with idiopathic PAH. The role of selected mediators of miR-150 identified by RNA sequencing was evaluated in vitro and in vivo. Endothelium-targeted miR-150 delivery prevented the disease in Sugen/hypoxia mice, while endothelial knockdown of miR-150 had adverse effects. miR-150 target genes revealed significant associations with PAH pathways, including proliferation, inflammation, and phospholipid signaling, with PTEN-like mitochondrial phosphatase (PTPMT1) most markedly altered. PTPMT1 reduced inflammation and apoptosis and improved mitochondrial function in human pulmonary endothelial cells and blood-derived endothelial colony-forming cells from idiopathic PAH. Beneficial effects of miR-150 in vitro and in vivo were linked with PTPMT1-dependent biosynthesis of mitochondrial phospholipid cardiolipin and reduced expression of pro-apoptotic, pro-inflammatory, and pro-fibrotic genes, including c-MYB, NOTCH3, transforming growth factor β (TGF-β), and Col1a1. In conclusion, we are the first to show that miR-150 supplementation attenuates pulmonary endothelial damage induced by vascular stresses and may be considered as a potential therapeutic strategy in PAH

    CLIC4/Arf6 Pathway A New Lead in BMPRII Inhibition in Pulmonary Hypertension

    Get PDF
    Rationale: Increased expression of CLIC4 (chloride intracellular channel 4) is a feature of endothelial dysfunction in pulmonary arterial hypertension, but its role in disease pathology is not fully understood. Objective: To identify CLIC4 effectors and evaluate strategies targeting CLIC4 signaling in pulmonary hypertension. Methods and Results: Proteomic analysis of CLIC4-interacting proteins in human pulmonary artery endothelial cells identified regulators of endosomal trafficking, including Arf6 (ADP ribosylation factor 6) GTPase activating proteins and clathrin, while CLIC4 overexpression affected protein regulators of vesicular trafficking, lysosomal function, and inflammation. CLIC4 reduced BMPRII (bone morphogenetic protein receptor II) expression and signaling as a result of Arf6-mediated reduction in gyrating clathrin and increased lysosomal targeting of the receptor. BMPRII expression was restored by Arf6 siRNA, Arf inhibitor Sec7 inhibitor H3 (SecinH3), and inhibitors of clathrin-mediated endocytosis but was unaffected by chloride channel inhibitor, indanyloxyacetic acid 94 or Arf1 siRNA. The effects of CLIC4 on NF-κB (nuclear factor-kappa B), HIF (hypoxia-inducible factor), and angiogenic response were prevented by Arf6 siRNA and SecinH3. Sugen/hypoxia mice and monocrotaline rats showed elevated expression of CLIC4, activation of Arf6 and NF-κB, and reduced expression of BMPRII in the lung. These changes were established early during disease development. Lung endothelium–targeted delivery of CLIC4 siRNA or treatment with SecinH3 attenuated the disease, reduced CLIC4/Arf activation, and restored BMPRII expression in the lung. Endothelial colony–forming cells from idiopathic pulmonary hypertensive patients showed upregulation of CLIC4 expression and Arf6 activity, suggesting potential importance of this pathway in the human condition. Conclusions: Arf6 is a novel effector of CLIC4 and a new therapeutic target in pulmonary hypertension

    Dissection des fonctions régulatrices des lymphocytes iNKT en situation auto-immune dans le modèle de la souris NOD

    No full text
    Les lymphocytes iNKT pour invariant Natural Killer T constituent une population minoritaire qui par sa remarquable parenté à la fois avec les lymphocytes NK et avec les lymphocytes T mémoires, forme une interface entre l immunité innée et l immunité adaptative. Les propriétés régulatrices de cette population T particulière qui est sélectionnée par la molécule CD1d et qui exprime une chaîne a du TCR invariante (Va14-Ja18 chez la souris et Va24-Ja18 chez l homme) reposent à la fois sur son auto-réactivité et sur sa dualité fonctionnelle (production rapide et massive de cytokines T helper (Th)1 et Th2). Les lymphocytes iNKT sont donc susceptibles de contribuer activement tant aux réponses humorales que cellulaires.PARIS5-BU-Necker : Fermée (751152101) / SudocSudocFranceF
    corecore