2,595 research outputs found

    Isospin properties of electric dipole excitations in 48Ca

    Get PDF
    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (\alpha,\alpha'\gamma) experiment at E_{\alpha}=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.Comment: 6 pages, 5 figures, as accepted in Phys. Lett.

    The decay of quadrupole-octupole 11^- states in 40^{40}Ca and 140^{140}Ce

    Full text link
    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E1E1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ\gamma-decay behavior of candidates for the (21+31)1(2_1^+\otimes 3_1^-)_{1^-} state in the doubly-magic nucleus 40^{40}Ca and in the heavier and semi-magic nucleus 140^{140}Ce is investigated. Methods: (γ,γ)(\vec{\gamma},\gamma') experiments have been carried out at the High Intensity γ\gamma-ray Source (HIγ{\gamma}S) facility in combination with the high-efficiency γ\gamma-ray spectroscopy setup γ3\gamma^3 consisting of HPGe and LaBr3_3 detectors. The setup enables the acquisition of γ\gamma-γ\gamma coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40^{40}Ca the decay into the 313^-_1 state was observed, while for 140^{140}Ce the direct decays into the 21+2^+_1 and the 02+0^+_2 state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N=82N=82 isotones. In addition, negative parities for two J=1J=1 states in 44^{44}Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 111^-_1 excitation in the light-to-medium-mass nucleus 40^{40}Ca as well as in the stable even-even N=82N=82 nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.

    Possible experimental signature of octupole correlations in the 02+^+_2 states of the actinides

    Full text link
    JπJ^{\pi}= 0+^+ states have been investigated in the actinide nucleus 240{}^{240}Pu up to an excitation energy of 3 MeV with a high-resolution (p,t) experiment at EpE_{p}= 24 MeV. To test the recently proposed JπJ^{\pi}= 02+^+_2 double-octupole structure, the phenomenological approach of the spdf-interacting boson model has been chosen. In addition, the total 0+^+ strength distribution and the 0+0^+ strength fragmentation have been compared to the model predictions as well as to the previously studied (p,t) reactions in the actinides. The results suggest that the structure of the 02+^+_2 states in the actinides might be more complex than the usually discussed pairing isomers. Instead, the octupole degree of freedom might contribute significantly. The signature of two close-lying 0+^+ states below the 2-quasiparticle energy is presented as a possible manifestation of strong octupole correlations in the structure of the 02+^+_2 states in the actinides.Comment: 6 pages, 5 figures, published in Phys. Rev. C 88, 041303(R) (2013

    Topological phases for bound states moving in a finite volume

    Get PDF
    We show that bound states moving in a finite periodic volume have an energy correction which is topological in origin and universal in character. The topological volume corrections contain information about the number and mass of the constituents of the bound states. These results have broad applications to lattice calculations involving nucleons, nuclei, hadronic molecules, and cold atoms. We illustrate and verify the analytical results with several numerical lattice calculations.Comment: 4 pages, 1 figure, version to appear in Phys. Rev. D Rapid Communication

    The Berry-Keating Hamiltonian and the Local Riemann Hypothesis

    Full text link
    The local Riemann hypothesis states that the zeros of the Mellin transform of a harmonic-oscillator eigenfunction (on a real or p-adic configuration space) have real part 1/2. For the real case, we show that the imaginary parts of these zeros are the eigenvalues of the Berry-Keating hamiltonian H=(xp+px)/2 projected onto the subspace of oscillator eigenfunctions of lower level. This gives a spectral proof of the local Riemann hypothesis for the reals, in the spirit of the Hilbert-Polya conjecture. The p-adic case is also discussed.Comment: 9 pages, no figures; v2 included more mathematical background, v3 has minor edits for clarit

    Isospin Character of the Pygmy Dipole Resonance in 124Sn

    Full text link
    The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance

    Localizations in coupled electronic chains

    Full text link
    We studied effects of random potentials and roles of electron-electron interactions in the gapless phase of coupled Hubbard chains, using a renormalization group technique. For non-interacting electrons, we obtained the localization length proportional to the number of chains, as already shown in the other approaches. For interacting electrons, the localization length is longer for stronger interactions, that is, the interactions counteract the random potentials. Accordingly, the localization length is not a simple linear function of the number of chains. This interaction effect is strongest when there is only a single chain. We also calculate the effects of interactions and random potentials on charge stiffness.Comment: no figure, to appear in Phys. Rev.

    Persistent current of two-chain Hubbard model with impurities

    Full text link
    The interplay between impurities and interactions is studied in the gapless phase of two-chain Hubbard model in order to see how the screening of impurity potentials due to repulsive interactions in single-chain model will be changed by increasing the number of channels. Renormalization group calculations show that charge stiffness, and hence persistent current, of the two-chain model are less enhanced by interactions than single chain case.Comment: 4 Pages, RevTeX, No figures, Submitted to PR

    One particle interchain hopping in coupled Hubbard chains

    Full text link
    Interchain hopping in systems of coupled chains of correlated electrons is investigated by exact diagonalizations and Quantum-Monte-Carlo methods. For two weakly coupled Hubbard chains at commensurate densities (e.g. n=1/3) the splitting at the Fermi level between bonding and antibonding bands is strongly reduced (but not suppressed) by repulsive interactions extending to a few lattice spacings. The magnitude of this reduction is directly connected to the exponent α\alpha of the 1D Luttinger liquid. However, we show that the incoherent part of the single particle spectral function is much less affected by the interchain coupling. This suggests that incoherent interchain hopping could occur for intermediate α\alpha values.Comment: 4 pages, LaTeX 3.0, 7 PostScript figures in uuencoded for

    Mott Transition and Spin Structures of Spin-1 Bosons in Two-Dimensional Optical Lattice at Unit Filling

    Full text link
    We study the ground state properties of spin-1 bosons in a two-dimensional optical lattice, by applying a variational Monte Carlo method to the S=1 Bose-Hubbard model on a square lattice at unit filling. A doublon-holon binding factor introduced in the trial state provides a noticeable improvement in the variational energy over the conventional Gutzwiller wave function and allows us to deal effectively with the inter-site correlations of particle densities and spins. We systematically show how spin-dependent interactions modify the superfluid-Mott insulator transitions in the S=1 Bose-Hubbard model due to the interplay between the density and spin fluctuations of bosons. Furthermore, regarding the magnetic phases in the Mott region, the calculated spin structure factor elucidates the emergence of nematic and ferromagnetic spin orders for antiferromagnetic (U2>0U_2>0) and ferromagnetic (U2<0U_2<0) couplings, respectively.Comment: 5 pages, 5 figures, to appear in Journal of the Physical Society of Japa
    corecore