4,555 research outputs found

    Protein connectivity in chemotaxis receptor complexes

    Get PDF
    The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET) measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures

    Dileptons in a coarse-grained transport approach

    Get PDF
    We calculate dilepton spectra in heavy-ion collisions using a coarse-graining approach to the simulation of the created medium with the UrQMD transport model. This enables the use of dilepton-production rates evaluated in equilibrium quantum-field theory at finite temperatures and chemical potentials.Comment: 4 pages, 2 figures, contribution to the proceedings of "The 15th International Conference on Strangeness in Quark Matter" (SQM 2015), 06-11 July in Dubna, Russi

    2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays

    Get PDF
    We demonstrate single-atom resolved imaging with a survival probability of 0.99932(8)0.99932(8) and a fidelity of 0.99991(1)0.99991(1), enabling us to perform repeated high-fidelity imaging of single atoms in tweezers for thousands of times. We further observe lifetimes under laser cooling of more than seven minutes, an order of magnitude longer than in previous tweezer studies. Experiments are performed with strontium atoms in 813.4 nm813.4~\text{nm} tweezer arrays, which is at a magic wavelength for the clock transition. Tuning to this wavelength is enabled by off-magic Sisyphus cooling on the intercombination line, which lets us choose the tweezer wavelength almost arbitrarily. We find that a single not retro-reflected cooling beam in the radial direction is sufficient for mitigating recoil heating during imaging. Moreover, this cooling technique yields temperatures below 5 μ5~\muK, as measured by release and recapture. Finally, we demonstrate clock-state resolved detection with average survival probability of 0.996(1)0.996(1) and average state detection fidelity of 0.981(1)0.981(1). Our work paves the way for atom-by-atom assembly of large defect-free arrays of alkaline-earth atoms, in which repeated interrogation of the clock transition is an imminent possibility.Comment: 6 pages, 5 figures, 1 vide

    A new proof of the Vorono\"i summation formula

    Full text link
    We present a short alternative proof of the Vorono\"i summation formula which plays an important role in Dirichlet's divisor problem and has recently found an application in physics as a trace formula for a Schr\"odinger operator on a non-compact quantum graph \mathfrak{G} [S. Egger n\'e Endres and F. Steiner, J. Phys. A: Math. Theor. 44 (2011) 185202 (44pp)]. As a byproduct we give a new proof of a non-trivial identity for a particular Lambert series which involves the divisor function d(n) and is identical with the trace of the Euclidean wave group of the Laplacian on the infinite graph \mathfrak{G}.Comment: Enlarged version of the published article J. Phys. A: Math. Theor. 44 (2011) 225302 (11pp

    Mediation of Long Range Charge Transfer by Kondo Bound States

    Get PDF
    We present a theory of non-equilibrium long range charge transfer between donor and acceptor centers in a model polymer mediated by magnetic exciton (Kondo) bound states. Our model produces electron tunneling lengths easily exceeding 10AËš\AA, as observed recently in DNA and organic charge transfer systems. This long ranged tunneling is effective for weak to intermediate donor-bridge coupling, and is enhanced both by weak to intermediate strength Coulomb hole-electron attraction (through the orthogonality catastrophe) and by coupling to local vibrational modes.Comment: Revised content (broadened scope, vibrations added), submitted to Phys Rev Lett, added autho

    Alkaline earth atoms in optical tweezers

    Get PDF
    We demonstrate single-shot imaging and narrow-line cooling of individual alkaline earth atoms in optical tweezers; specifically, strontium-88 atoms trapped in 515.2 nm515.2~\text{nm} light. We achieve high-fidelity single-atom-resolved imaging by detecting photons from the broad singlet transition while cooling on the narrow intercombination line, and extend this technique to highly uniform two-dimensional arrays of 121121 tweezers. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism, which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate optically resolved sideband cooling of a single atom close to the motional ground state of a tweezer. Precise determination of losses during imaging indicate that the branching ratio from 1^1P1_1 to 1^1D2_2 is more than a factor of two larger than commonly quoted, a discrepancy also predicted by our ab initio calculations. We also measure the differential polarizability of the intercombination line in a 515.2 nm515.2~\text{nm} tweezer and achieve a magic-trapping configuration by tuning the tweezer polarization from linear to elliptical. We present calculations, in agreement with our results, which predict a magic crossing for linear polarization at 520(2) nm520(2)~\text{nm} and a crossing independent of polarization at 500.65(50)nm. Our results pave the way for a wide range of novel experimental avenues based on individually controlled alkaline earth atoms in tweezers -- from fundamental experiments in atomic physics to quantum computing, simulation, and metrology implementations

    Experimental constraints on the γ\gamma-ray strength function in 90^{90}Zr using partial cross sections of the 89^{89}Y(p,γ\gamma)90^{90}Zr reaction

    Get PDF
    Partial cross sections of the 89^{89}Y(p,γ\gamma)90^{90}Zr reaction have been measured to investigate the γ\gamma-ray strength function in the neutron-magic nucleus 90^{90}Zr. For five proton energies between Ep=3.65E_p=3.65 MeV and Ep=4.70E_p=4.70 MeV, partial cross sections for the population of seven discrete states in 90^{90}Zr have been determined by means of in-beam γ\gamma-ray spectroscopy. Since these γ\gamma-ray transitions are dominantly of E1E1 character, the present measurement allows an access to the low-lying dipole strength in 90^{90}Zr. A γ\gamma-ray strength function based on the experimental data could be extracted, which is used to describe the total and partial cross sections of this reaction by Hauser-Feshbach calculations successfully. Significant differences with respect to previously measured strength functions from photoabsorption data point towards deviations from the Brink-Axel hypothesis relating the photo-excitation and de-excitation strength functions.Comment: 5 pages, 5 figure
    • …
    corecore