3,777 research outputs found

    Rotational spectroscopy of the HCCO and DCCO radicals in the millimeter and submillimeter range

    Full text link
    The ketenyl radical, HCCO, has recently been detected in the ISM for the first time. Further astronomical detections of HCCO will help us understand its gas-grain chemistry, and subsequently revise the oxygen-bearing chemistry towards dark clouds. Moreover, its deuterated counterpart, DCCO, has never been observed in the ISM. HCCO and DCCO still lack a broad spectroscopic investigation, although they exhibit a significant astrophysical relevance. In this work we aim to measure the pure rotational spectra of the ground state of HCCO and DCCO in the millimeter and submillimeter region, considerably extending the frequency range covered by previous studies. The spectral acquisition was performed using a frequency-modulation absorption spectrometer between 170 and 650 GHz. The radicals were produced in a low-density plasma generated from a select mixture of gaseous precursors. For each isotopologue we were able to detect and assign more than 100 rotational lines. The new lines have significantly enhanced the previous data set allowing the determination of highly precise rotational and centrifugal distortion parameters. In our analysis we have taken into account the interaction between the ground electronic state and a low-lying excited state (Renner-Teller pair) which enables the prediction and assignment of rotational transitions with KaK_a up to 4. The present set of spectroscopic parameters provides highly accurate, millimeter and submillimeter rest-frequencies of HCCO and DCCO for future astronomical observations. We also show that towards the pre-stellar core L1544, ketenyl peaks in the region where cc-C3H2\mathrm{C_3H_2} peaks, suggesting that HCCO follows a predominant hydrocarbon chemistry, as already proposed by recent gas-grain chemical models

    Experimental constraints on the γ\gamma-ray strength function in 90^{90}Zr using partial cross sections of the 89^{89}Y(p,γ\gamma)90^{90}Zr reaction

    Get PDF
    Partial cross sections of the 89^{89}Y(p,γ\gamma)90^{90}Zr reaction have been measured to investigate the γ\gamma-ray strength function in the neutron-magic nucleus 90^{90}Zr. For five proton energies between Ep=3.65E_p=3.65 MeV and Ep=4.70E_p=4.70 MeV, partial cross sections for the population of seven discrete states in 90^{90}Zr have been determined by means of in-beam γ\gamma-ray spectroscopy. Since these γ\gamma-ray transitions are dominantly of E1E1 character, the present measurement allows an access to the low-lying dipole strength in 90^{90}Zr. A γ\gamma-ray strength function based on the experimental data could be extracted, which is used to describe the total and partial cross sections of this reaction by Hauser-Feshbach calculations successfully. Significant differences with respect to previously measured strength functions from photoabsorption data point towards deviations from the Brink-Axel hypothesis relating the photo-excitation and de-excitation strength functions.Comment: 5 pages, 5 figure

    Measurement of the 187Re({\alpha},n)190Ir reaction cross section at sub-Coulomb energies using the Cologne Clover Counting Setup

    Full text link
    Uncertainties in adopted models of particle+nucleus optical-model potentials directly influence the accuracy in the theoretical predictions of reaction rates as they are needed for reaction-network calculations in, for instance, {\gamma}-process nucleosynthesis. The improvement of the {\alpha}+nucleus optical-model potential is hampered by the lack of experimental data at astrophysically relevant energies especially for heavier nuclei. Measuring the Re187({\alpha},n)Ir190 reaction cross section at sub-Coulomb energies extends the scarce experimental data available in this mass region and helps understanding the energy dependence of the imaginary part of the {\alpha}+nucleus optical-model potential at low energies. Applying the activation method, after the irradiation of natural rhenium targets with {\alpha}-particle energies of 12.4 to 14.1 MeV, the reaction yield and thus the reaction cross section were determined via {\gamma}-ray spectroscopy by using the Cologne Clover Counting Setup and the method of {\gamma}{\gamma} coincidences. Cross-section values at five energies close to the astrophysically relevant energy region were measured. Statistical model calculations revealed discrepancies between the experimental values and predictions based on widely used {\alpha}+nucleus optical-model potentials. However, an excellent reproduction of the measured cross-section values could be achieved from calculations based on the so-called Sauerwein-Rauscher {\alpha}+nucleus optical-model potential. The results obtained indicate that the energy dependence of the imaginary part of the {\alpha}+nucleus optical-model potential can be described by an exponential decrease. Successful reproductions of measured cross sections at low energies for {\alpha}-induced reactions in the mass range 141{\leq}A{\leq}187 confirm the global character of the Sauerwein-Rauscher potential

    Sign problems, noise, and chiral symmetry breaking in a QCD-like theory

    Full text link
    The Nambu-Jona-Lasinio model reduced to 2+1 dimensions has two different path integral formulations: at finite chemical potential one formulation has a severe sign problem similar to that found in QCD, while the other does not. At large N, where N is the number of flavors, one can compute the probability distributions of fermion correlators analytically in both formulations. In the former case one finds a broad distribution with small mean; in the latter one finds a heavy tailed positive distribution amenable to the cumulant expansion techniques developed in earlier work. We speculate on the implications of this model for QCD.Comment: 16 pages, 5 figures; Published version with minor changes from the origina

    Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs

    Full text link
    A derivation of the spectral determinant of the Schr\"odinger operator on a metric graph is presented where the local matching conditions at the vertices are of the general form classified according to the scheme of Kostrykin and Schrader. To formulate the spectral determinant we first derive the spectral zeta function of the Schr\"odinger operator using an appropriate secular equation. The result obtained for the spectral determinant is along the lines of the recent conjecture.Comment: 16 pages, 2 figure

    A new proof of the Vorono\"i summation formula

    Full text link
    We present a short alternative proof of the Vorono\"i summation formula which plays an important role in Dirichlet's divisor problem and has recently found an application in physics as a trace formula for a Schr\"odinger operator on a non-compact quantum graph \mathfrak{G} [S. Egger n\'e Endres and F. Steiner, J. Phys. A: Math. Theor. 44 (2011) 185202 (44pp)]. As a byproduct we give a new proof of a non-trivial identity for a particular Lambert series which involves the divisor function d(n) and is identical with the trace of the Euclidean wave group of the Laplacian on the infinite graph \mathfrak{G}.Comment: Enlarged version of the published article J. Phys. A: Math. Theor. 44 (2011) 225302 (11pp

    Zeta functions of quantum graphs

    Full text link
    In this article we construct zeta functions of quantum graphs using a contour integral technique based on the argument principle. We start by considering the special case of the star graph with Neumann matching conditions at the center of the star. We then extend the technique to allow any matching conditions at the center for which the Laplace operator is self-adjoint and finally obtain an expression for the zeta function of any graph with general vertex matching conditions. In the process it is convenient to work with new forms for the secular equation of a quantum graph that extend the well known secular equation of the Neumann star graph. In the second half of the article we apply the zeta function to obtain new results for the spectral determinant, vacuum energy and heat kernel coefficients of quantum graphs. These have all been topics of current research in their own right and in each case this unified approach significantly expands results in the literature.Comment: 32 pages, typos corrected, references adde

    The CDMS view on molecular data needs of Herschel, SOFIA, and ALMA

    Full text link
    The catalog section of the Cologne Database for Molecular Spectroscopy, CDMS, contains mostly rotational transition frequencies, with auxiliary information, of molecules observable in space. The frequency lists are generated mostly from critically evaluated laboratory data employing established Hamiltonian models. The CDMS has been online publicly for more than 12 years, e.g., via the short-cut http://www.cdms.de. Initially constructed as ascii tables, its inclusion into a database environment within the Virtual Atomic and Molecular Data Centre (VAMDC, http://www.vamdc.eu) has begun in June 2008. A test version of the new CDMS is about to be released. The CDMS activities have been part of the extensive laboratory spectroscopic investigations in Cologne. Moreover, these activities have also benefit from collaborations with other laboratory spectroscopy groups as well as with astronomers. We will provide some basic information on the CDMS and its participation in the VAMDC project. In addition, some recent detections of molecules as well as spectroscopic studies will be discussed to evaluate the spectroscopic data needs of Herschel, SOFIA, and ALMA in particular in terms of light hydrides, complex molecules, and metal containing speciesComment: 14 pages, 1 figure; AIP Conf. Proc., accepted; Proceedings of the Eighths International Conference on Atomic and Molecular Data and Their Applicatio

    The Energetic Costs of Cellular Computation

    Full text link
    Cells often perform computations in response to environmental cues. A simple example is the classic problem, first considered by Berg and Purcell, of determining the concentration of a chemical ligand in the surrounding media. On general theoretical grounds (Landuer's Principle), it is expected that such computations require cells to consume energy. Here, we explicitly calculate the energetic costs of computing ligand concentration for a simple two-component cellular network that implements a noisy version of the Berg-Purcell strategy. We show that learning about external concentrations necessitates the breaking of detailed balance and consumption of energy, with greater learning requiring more energy. Our calculations suggest that the energetic costs of cellular computation may be an important constraint on networks designed to function in resource poor environments such as the spore germination networks of bacteria.Comment: 9 Pages (including Appendix); 4 Figures; v3 corrects even more typo
    corecore