311 research outputs found

    An Excess of C IV Absorbers in Luminous QSOs: Evidence for Gravitational Lensing?

    Full text link
    We have compiled a new and extensive catalog of heavy-element QSO absorption line systems and analyzed the distribution of absorbers in bright and faint QSOs, to search for gravitational lensing of background QSOs by the matter associated with the absorbers. There is a highly significant excess of C {\sc iv} absorbers in bright QSOs in the redshift range z=1.23.2z=1.2-3.2, and this excess increases strongly as a function of QSO absolute magnitude. No significant excess is found for Mg {\sc ii} absorbers in the redshift range z=0.301.55z=0.30-1.55. We rule out several possible reasons for this effect and argue that the C {\sc iv} excess could be due to gravitational lensing. If so, then the lensing masses must be at z1.5z \gtrsim 1.5 and within several hundred comoving Mpc of the QSOs, where the C {\sc iv} absorbers are mainly found. The absence of an excess in the available Mg {\sc ii} sample would then arise because the Mg {\sc ii} data does not sample this region of space.Comment: 21 LaTeX pages with 5 encapsulated Postscript figures included, uses AASTeX (v. 4.0) available at ftp://ftp.aas.org/pubs/ , to appear in The Astrophysical Journal, Sept. 20, 199

    Dust Reddening in SDSS Quasars

    Get PDF
    We explore the form of extragalactic reddening toward quasars using a sample of 9566 quasars with redshifts 0<z<2.2, and accurate optical colors from the Sloan Digital Sky Survey (SDSS). We confirm that dust reddening is the primary explanation for the red ``tail'' of the color distribution of SDSS quasars. Our fitting to 5-band photometry normalized by the modal quasar color as a function of redshift shows that this ``tail'' is well described by SMC-like reddening but not by LMC-like, Galactic, or Gaskell et al. (2004) reddening. Extension to longer wavelengths using a subset of 1886 SDSS-2MASS matches confirms these results at high significance. We carry out Monte-Carlo simulations that match the observed distribution of quasar spectral energy distributions using a Lorentzian dust reddening distribution; 2% of quasars selected by the main SDSS targeting algorithm (i.e., which are not extincted out of the sample) have E_{B-V} > 0.1; less than 1% have E_{B-V} > 0.2, where the extinction is relative to quasars with modal colors. Reddening is uncorrelated with the presence of intervening narrow-line absorption systems, but reddened quasars are much more likely to show narrow absorption at the redshift of the quasar than are unreddened quasars. Thus the reddening towards quasars is dominated by SMC-like dust at the quasar redshift.Comment: 29 pages including 8 figures. AJ, September 2004 issu

    The UV, Optical, and IR Properties of SDSS Sources Detected by GALEX

    Full text link
    We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represent ~2.5% of all SDSS sources within these fields and about half are optically unresolved. Most unresolved GALEX/SDSS sources are bright blue turn-off thick disk stars and are typically detected only in the GALEX near-UV band. The remaining unresolved sources include low-redshift quasars, white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically unresolved sources detected in both GALEX bands. Almost all the resolved SDSS sources detected by GALEX are fainter than the SDSS 'main' spectroscopic limit. These sources have colors consistent with those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX bands. Measurements of their UV colors allow much more accurate and robust estimates of star-formation history than are possible using only SDSS data. Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly selected from the GALEX data by requiring that they be brighter in the far-UV than in the near-UV band. However, older starburst galaxies have UV colors similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX fluxes alone. With the aid of 2MASS data, we construct and discuss median 10 band UV-optical-IR spectral energy distributions for turn-off stars, hot white dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out the high degree of correlation between the UV color and the contribution of the UV flux to the UV-optical-IR flux of galaxies detected by GALEX.Comment: 35 pages, 11 figures, 3 tables; to appear in the AJ. PS with better figures available from http://www.astro.washington.edu/agueros/pub

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore