482 research outputs found

    Heatpipe power system and heatpipe bimodal system design and development options

    Get PDF
    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance

    The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory

    Full text link
    We report on the design, deployment, and first results from a scintillation detector deployed at the Murchison Radio-astronomy Observatory (MRO). The detector is a prototype for a larger array -- the Square Kilometre Array Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays with the Murchison Widefield Array and the low-frequency component of the Square Kilometre Array. The prototype design has been driven by stringent limits on radio emissions at the MRO, and to ensure survivability in a desert environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize the detector response while accounting for the effects of temperature fluctuations, and calibrate the sensitivity of the prototype detector to through-going muons. This verifies the feasibility of cosmic ray detection at the MRO. We then estimate the required parameters of a planned array of eight such detectors to be used to trigger radio observations by the Murchison Widefield Array.Comment: 17 pages, 14 figures, 3 table

    Effects of Short Range Correlations on Ca Isotopes

    Get PDF
    The effect of Short Range Correlations (SRC) on Ca isotopes is studied using a simple phenomenological model. Theoretical expressions for the charge (proton) form factors, densities and moments of Ca nuclei are derived. The role of SRC in reproducing the empirical data for the charge density differences is examined. Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation probabilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the mass number is also discussed.Comment: 11 pages (RevTex), 6 Postscript figures available upon request at [email protected] Physical Review C in prin

    The Evolution of the Anopheles 16 Genomes Project

    Get PDF
    We report the imminent completion of a set of reference genome assemblies for 16 species of Anopheles mosquitoes. In addition to providing a generally useful resource for comparative genomic analyses, these genome sequences will greatly facilitate exploration of the capacity exhibited by some Anopheline mosquito species to serve as vectors for malaria parasites. A community analysis project will commence soon to perform a thorough comparative genomic investigation of these newly sequenced genomes. Completion of this project via the use of short next-generation sequence reads required innovation in both the bioinformatic and laboratory realms, and the resulting knowledge gained could prove useful for genome sequencing projects targeting other unconventional genomes

    PrimerHunter: a primer design tool for PCR-based virus subtype identification

    Get PDF
    Rapid and reliable virus subtype identification is critical for accurate diagnosis of human infections, effective response to epidemic outbreaks and global-scale surveillance of highly pathogenic viral subtypes such as avian influenza H5N1. The polymerase chain reaction (PCR) has become the method of choice for virus subtype identification. However, designing subtype-specific PCR primer pairs is a very challenging task: on one hand, selected primer pairs must result in robust amplification in the presence of a significant degree of sequence heterogeneity within subtypes, on the other, they must discriminate between the subtype of interest and closely related subtypes. In this article, we present a new tool, called PrimerHunter, that can be used to select highly sensitive and specific primers for virus subtyping. Our tool takes as input sets of both target and nontarget sequences. Primers are selected such that they efficiently amplify any one of the target sequences, and none of the nontarget sequences. PrimerHunter ensures the desired amplification properties by using accurate estimates of melting temperature with mismatches, computed based on the nearest neighbor model via an efficient fractional programming algorithm. Validation experiments with three avian influenza HA subtypes confirm that primers selected by PrimerHunter have high sensitivity and specificity for target sequences

    PrimerHunter: a primer design tool for PCR-based virus subtype identification

    Get PDF
    Rapid and reliable virus subtype identification is critical for accurate diagnosis of human infections, effective response to epidemic outbreaks and global-scale surveillance of highly pathogenic viral subtypes such as avian influenza H5N1. The polymerase chain reaction (PCR) has become the method of choice for virus subtype identification. However, designing subtype-specific PCR primer pairs is a very challenging task: on one hand, selected primer pairs must result in robust amplification in the presence of a significant degree of sequence heterogeneity within subtypes, on the other, they must discriminate between the subtype of interest and closely related subtypes. In this article, we present a new tool, called PrimerHunter, that can be used to select highly sensitive and specific primers for virus subtyping. Our tool takes as input sets of both target and nontarget sequences. Primers are selected such that they efficiently amplify any one of the target sequences, and none of the nontarget sequences. PrimerHunter ensures the desired amplification properties by using accurate estimates of melting temperature with mismatches, computed based on the nearest neighbor model via an efficient fractional programming algorithm. Validation experiments with three avian influenza HA subtypes confirm that primers selected by PrimerHunter have high sensitivity and specificity for target sequences

    Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data

    Get PDF
    We present techniques for bridging the gap between idealized inverse covariance weighted quadratic estimation of 21 cm power spectra and the real-world challenges presented universally by interferometric observation. By carefully evaluating various estimators and adapting our techniques for large but incomplete data sets, we develop a robust power spectrum estimation framework that preserves the so-called "Epoch of Reionization (EoR) window" and keeps track of estimator errors and covariances. We apply our method to observations from the 32-tile prototype of the Murchinson Widefield Array to demonstrate the importance of a judicious analysis technique. Lastly, we apply our method to investigate the dependence of the clean EoR window on frequency—especially the frequency dependence of the so-called “wedge" feature—and establish upper limits on the power spectrum from z ¼ 6.2 to z ¼ 11:7. Our lowest limit is ?ðkÞ < 0.3 Kelvin at 95% confidence at a comoving scale k ¼ 0.046 Mpc-1 and z ¼ 9.5
    corecore