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QUANTUM SPIN LATTICE MODELS: A COUPLED-CLUSTER TREATMENT

R.F. Bishop, J.B. Parkinson and Yang Xian

Department of Mathematics
University of Manchester Institute of Science and Technology
P.O. Box 88, Manchester M60 1QD, England

1. INTRODUCTION

Infinite one-dimensional chains of quantum-mechanical spins interacting
via localized (typically nearest-neighbour) interactions, and their obvious
extensions to regular lattices in higher numbers of dimensions, have been
objects of theoretical interest for a very long time. Indeed, the exact
energy eigenstates of the one-dimensional spin-half chain interacting via the
isotropic Heisenberg interaction between neighbouring sites, were exactly
solved in principle by Bethe! some sixty years ago. Since then the
Bethe-ansatz type of solution has been discovered to be applicable to, and
fundamental to, a much wider class of integrable Hamiltonian models. This
latter feature undoubtedly explains by itself much of the continuing interest
in these spin lattice models. Another reason is that, intriguingly, the exact
method of Bethe seems to be surprisingly impervious to being extended to deal.
with similar models in a higher number of dimensions.

Furthermore, the form of the solution for the wavefunction, although’
exact, is so difficult to use in practice that even now various properties of
the systems solvable by Bethe-ansatz techniques are not themselves exactly
known. Such properties include the precise details of the long-range order in
the system, which could be found from an exact knowledge of the asymptotic
behaviour of the correlation functions at large distances.

In view of the enduring theoretical interest in the quantum spin chain
and lattice models it is perhaps surprising that the various fundamental
microscopic techniques of quantum many-body theory have scarcely been applied
to them up to the present time. Indeed, quite apart from the above reasons,
there are many features of the discrete spin lattice models that make them
very attractive and challenging candidates for study by microscopic quantum
many-body techniques. In the first place, most of the models are themselves
analytically and conceptually simple, while being highly nontrivial to solve
exactly. Indeed they contain some of the mathematically most - intractable
models. Nevertheless, they provide the many-body theorist with a nice mixture
of exact results against which techniques and approximations can be judged and
measured, and simply stated yet unsolved problems of fundamental interest. In.
fact, within a single class of model lattice. problems one can often find an
interesting combination of both integrable and nonintegrable systems.

An important feature of the discrete quantum spin lattice models, .
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especially in low dimensions, is that their behaviour is in many respects
quite different, and often counter-intuitive, from that of their classical
counterparts. Indeed, in this respect they are among the most
quantum-mechanical of all many-body systems. In particular, they display
interesting phase transitions and other unexpected behaviour as a function,
for example, of the coupling parameters in the Hamiltonian, the dimensionality
of the system, the value of the total spin quantum number of the individual
spins, and the strength of the coupling to external magnetic fields, none of
which is easily intuited by classical arguments. Of further interest to the
theorist is that the various model systems may easily be studied in different
numbers of spatial dimensions and on different geometrical lattices, for
example, within the same formalism. Furthermore, these discrete lattice
models are often also studied as proxies for various nonlinear quantum field
theories of great theoretical interest, to which they correspond in either the
continuum limit or some quasiclassical limit in which the spin quantum number
s - o, for example.

Finally, we note that discrete spin lattice problems are also of
considerable experimental interest. Apart from such obvious candidates as the
solid crystalline phases of “He, several lower-dimensional systems are also
believed to be experimentally realizable. An example of a
quasi~one-dimensional system is the material CsNiCl3 which is believed to be

an antif erron}_a‘_gnet_ic chain in which the magnetic nickel ions form chains with
a strong Ni -Cl -Ni superexchange coupling. Similarly, two-dimensional
lattice systems are widely believed to provide a good model for the
high-temperature superconductivity exhibited by the recently discovered
ceramic oxide materials, in which the layered Cqu planes are thought to be an

important aspect of the phenomenon.

For all of the above reasons it is our intention here to explore the
applicability of the coupled cluster method (CCM) to quantum spin lattice
models, since this method has now become firmly established as providing one
of the most powerful and most accurate of all microscopic formulations of
quantum many-body theory. It has been widely applied to many different types
of physical systems, although not yet to spin lattice models, with the
exception of some pioneering work of Roger and Hetherington,” which was
specifically directed to the problem of the ground state of solid "He.

A fundamental reason for the wide success of the CCM emanates from its
parametrization of the exact many-body ground-state wavefunction as an
exponential operator, exp(S), acting on some suitable noninteracting or model
state. In this way the resulting pertugbation or cluster expansion contains
only linked terms. Coester and Kimmel  have shown how the linked cluster
operator S can be used as the generator of a similarity transformation for the
exact ground-state problem. They thereby originated what has since become
known as the CCM. A lzather general and pedagogical discussion of the method
has been given recently, and other more technical reviews have also described
the CCM within the context of various specific fields of application.””

The range of numerically very accurate CCM applications has been wide.
It includes problems in_ nuclear physics,” both for finite nuclei and
infinite nuclear matter; atomic and molecular eﬁgs&ems in quantum
chemistry; * and the homogeneous electron liquid. "™’ More recently,
the CCM has also been successfully applied to two systems not normally
associated with traditio‘r,'lal many-body physics, namely the quantum anharmonic
oscillator, and the ¢ relativistic quantum field theory.

The particular spin lattice models*"under consideration here are first

briefly reviewed in Sec. 2, where we also discuss some of the exact results
that are known. One of the key features of the CCM is that it is a
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biorthogonal (rather than an orthogonal) formulation of the quantum many-body
problem, in which the corresponding bra and ket states are hence not
maintained as being manifestly hermitian conjugate to each other.
Accordingly, we first describe in Sec. 3 the coupled -cluster (CC)
parametrization of the ground ket energy eigenstate, with particular emphasis
initially on the one-dimensional (l1-d) spin-half (s = 4) XXZ model. Although
the ket state suffices to calculate the ground-state energy of the system via
the Schrddinger equation, other properties require a knowledge of the
respective bra state also. Its corresponding CC parametrization is discussed
in Sec. 4.

In Secs. 3 and 4 we describe several intuitively appealing new CC
approximation schemes which are especially tailored to the spin lattice
models. After having demonstrated their usefulness for calculations of the
ground-state energy in Sec. 3, we turn in Sec. 5 to the much more demanding
calculation of the correlation function and the corresponding order parameter
which determines the presence or absence of long-range (antiferromagnetic)
order. In view of the rather successful outcomes of these calculations, we
turn in Sec. 6 to their generalization to the corresponding two-dimensional
(2-d) model on a square lattice, for which almost no exact results are known.
Finally, our results are summarized and discussed in Sec. 7.

2. BRIEF REVIEW AND EXACT RESULTS

We are concerned with the general problem of N quantum-mechanical spins

s = (s:; a = X,y,z} on the sites {i} of a given regular lattice in d

dimensions. The spins obey the usual SU(2) angular momentum algebra,

a b a c
s ] = e s 1
[sj, k] 1SJk abSk (1)
in terms of the usual three-dimensional antisymmetric unit tensor € 0’ and

where the summation convention is employed. The spin quantum number s may
take any of the usual integral or half-integral values,

‘s’i = s(s+l) ; s = 1/2,1,3/2,... . @

We shall mostly be interested in the infinite lattice limit where N - o, and
where periodic boundary conditions are used.

In the present paper we concentrate on the so-called XXZ model with
nearest-neighbour interactions between the localized spins described by the
(anisotropic) Hamiltonian,

H = Z (s%s* + s)_'sy + Aszsz.) s (3a)
<p i i} i)

and where the notation <ij> refers to nearest-neighbour pairs. For example,
in 1-d Eq. (3a) takes the explicit form,

N
H= Z(stx + 578+ As%7 ), (3b)
= 1 i+ 1 141 1 i+l
and with the periodic boundary condition that site (i = N+r) is identical to
site (i = r). The Hamiltonian of Eq. (3b) is antiferromagnetic for A > -1 and
ferromagnetic for A = -l We note that Eqgs. (3a,b) contain as three
particular special cases the Ising model (A - «), the (isotropic) Heisenberg
model (A = 1), and the isotropic planar XY model (A = 0). We also observe
that the general XXZ Hamiltonian of Eq. (3a) commutes with the z-component of
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the total spin operator, ZT'

_S)EZ_S), (4)

and hence the energy eigenstates are therefore simultaneous eigenstates of the
z-component of total spin, s:.

For the spin-half (s = %) 1-d Heisex}berg (A = 1) chain, the exact
eigenstates were formally obtained by Bethe in 1931 for arbitrary N. The
difficulty of actually using these wavefunctions is perhaps first demonstrated
by the fact that it was not until seven years later that Hulthén'® found the
antiferromagnetic ground-state energy for the infinite (N - ) chain, using an
integral equation approach. Secondly, the continuing doubt about the nature
of the long-range order even when the exact wavefunction had long been known
in principle, and the fact that the Bethe-ansatz technique is inapplicable to
the d > 1 case, led Anderson”® and, independently, Kubo™ to introduce the
approximate spin-wave theory to describe these systems. In 1958, Orbach?
generalized the method of Bethe to deal with the anisotropic (A # 1) case
considered here.

Moving beyond the ground state, the low-lying excited states of the s = %
Heisenbe{:g model in 1-d were first investigated by des Cloiseaux and Pearson
in 1962, using a %%neralization of the earlier Hulthén approach. Later work
of Yang and Yang was also of importance for the XXZ model in this
connection. A detailed description of the (so-called antiferromagnetic spin
wave) excitations of the anisotropic s = 4 Hamiltonian of Eq. (3b) was given
by des Cloiseaux and Gaudin~ in 1966. Nevertheless, it was not until 1981
that Faddeev and Takhtajan™ cleared up the confusion that had existed until
then concerning the precise nature of the Bethe-ansatz spin-wave excited
eigenstates.

In particular, they established, specifically for the Heisenberg
antiferromagnet, that the actual spin of a spin wave in the 1-d s = % chain is
equal to one half rather than the triplet (s = 1) or singlet (s = 0) values
that had been assumed previously. They further showed that all physical
states have integral values of spin and contain an even number of spin waves.
The spin wave excitation is itself a kink rather than an ordinary “particle”.
In this way they also made contact between the eigenstates found by
Bethe-zg.nsatz techniques and those found by the application to this Heisenberg
model” of the then very recently invented quantum inverse scattering method
of Faddeev™ and his coworkers. We note in passing that the quantum inverse
scattering method (QISM) (or quantum spectral transform method) rejuvenates
and makes much more transparent the depth and power of the conventional
Bethe-ansatz technique. By contrast to the original coordinate-space
formulation of the Bethe ansatz, the QISM essentially algebraizes the
technique. It thereby allows the energy eigenvalues, and other integrals of
the motion in more general cases, to be evaluated directly, without passing
through the complicated intermediate stage of explicitly evaluating the
corresponding eigenfunctions in their coordinate-space representation.

Out of the work discussed above, the following exact results have emerged
for the s = } linear XXZ chain. For values A = -1, namely the ferromagnetic
(s; = * IN) regime, the exact ground-state (g.s.) energy is

E/N=}r; b=-1. (5)

There is a first-order phase transition to a ‘critical’ antiferromagnetic

40



phase at A = -1. We note that whereas the perfectly aligned ferromagnetic
state with all spins oriented along the z-axis is an exact eigenstate of both
the quantum-mechanical Hamiltonian of Eq. (3b) and its classical counterpart,
the corresponding perfectly ordered alternating Néel state ]TJ,T‘L..}, which is

the classical antiferromagnetic ground state, is not an eigenstate of the
quantum-mechanical Hamiltonian except in the Ising (A » «) limit.

On the antiferromagnetic side of the transition (A > ~-1) the
quantum-mechanical system has an Ising-like doubly-degenerate ground state

only for A > 1. This state has s: = 0, and an energy given by the exact
expression,
E © _
N_g = }coshy - %sinhzf[l + 4 Z(e ™ 4+ D l] ; 1< A =coshy . (6)
m=1

It is not difficult to show from Eq. (6) that in the Heisenberg and Ising
limits the g.s. energy is given respectively as,

%:;—mz; A=1, (7a)

Eg 1

T 35 -1 [A + K} . (7v)
At A = 1 the system undergoes a second-order phase transition to a singlet
(s_r = O0) nondegenerate ground state. This phase persists down to the
ferromagnetic transition (i.e., for -1 < A < 1), The g.s. energy of this

phase is given by the exact expression,

M

g _ _ .2 dw .
5 1cose - isin’e '[m cosh(nw)[cosh(26w)-cos6] ’

8] <1,

(8
0=6=cos A=mw.

The g.s. energy of Eq. (8) is continuous at A = 1 with that of Eg. (6). It
can also be specifically evaluated for the planar XY model,

1
g _ _ . =
Ny b A=0. (9)

The above two antiferromagnetic phases of the 1-d s = 4 XXZ chain differ
principally in their long-range order properties. These are conveniently
summarized in terms of the spin-spin correlation function g, defined by the

relation,

g, = <ooo- > (10)

¥ »
1 1i+n

in terms of the usual Pauli spin matrices, 2 = ég, and where the translational
invariance implied by the periodic boundary condition assures the independence
of g, on the site position i and its dependence only on the relative spacing n

of the two spins. The order parameter u associated with the transition is
then defined as

g = lim [gnl . ()

n>0
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The Ising-like phase (A > 1) is characterized by the presence of
long-range order, p > O, and by correlations which approach this limiting
nonzero value exponentially. By contrast, the order parameter p is zero in
the range |A| < 1, but this (otherwise disordered) phase is ‘critical’ in the
usual sense of having correlations which decay algebraically (i.e., with
power-law behaviour) to zero. In summary, the correlation function has the
behaviour,

D" (u+Al™) 3 A> 1
2 -B PR

g == (-1)"Bn ; 1<A<1 (12)
1 ;i A< -1,

where the constants p, A, B and £, and the exponent B > 0, all depend on A.
In particular, the order parameter has the limiting behaviour,
1.5 A>ow
p— (13)
0; A->1.

The two antiferromagnetic phases also differ qualitatively with respect
to their excitation spectra. The excited states are usually given in terms of
a dispersion law (k) for the excitation energy, with respect to -a momentum k
lying in _the first Brillouin zone, -m = k = w, although Faddeev and
Takhta jan have indicated that the fundamental excitation spectrum is
actually that of a single s; = % kink with momentum O = k = m. In the

Ising-like phase (A > 1) this single kink has exact excitation energy given by
the relation,

K
e(k) = n—l sinhv)'(l-kfcoszk)é ; 1<A=cosy, (14)

where the parameter k1 is given in terms of the complete elliptic integrals K1

and K’,
1
1 1
-1 . 1 -
K, =J de(1-k’sin’6) %, K/ = J' del1-(1-k*)sin’e] 3 (15)
1] [4]

by the relation,

~ A
|
Hx

(16)
1

The spectrum of Eq. (14) clearly shows the presence of a nonzero gap
between the ground and first excited state at the zone boundary, k = m. By
contrast, the critical phase displays a gapless excitation spectrum, e(k=m)
= 0, whose exact form is given as,

s(k)=%sinesink; 0O<o6=cos A=m, O=ks=mu. (17)
Finally, we note that the observed s: = *] excitations are actually formed

from two kink solutions of the form of Eq. (14) or Eq. (17). They have energy
E(k) given by the additive relation,

E(k) = e(q) + £(k-q) , (18)

and thus form a continuum (with respect to the parameter q) for a given value
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of (total) momentum k. The lower boundary of this continuum gives the
"antiferromagnetic spin waves" of Refs. [23,25].

If we now extend the discussion away from the 1-d Hamiltonian of Eq. (3b)
for s = } systems, either to higher dimensionality (d > 1) or to spins s > 3,
the situation changes dramatically. In the first place, if we consider the
same s = 3 XXZ Hamiltonian but for lattices in two or more dimensions, almost
no exact results are known. In particular, the Bethe-ansatz technique of
solution which was so useful in 1-d has never been successf' ully extended to
provide exact solutions for the case d > 1.

Similarly, the Hamiltonian of Eq. (3a) or Eq. (3b) is not integrable for
the case s = 1, even in 1-d, and exact results are not known. Nevertheless,
there has been enormous interest in the last few years in the quantum spin

chains with s = 1 and with various interactions between the spins, after the
remarkable conjecture of Haldane™ in 1983 concerning the isotropic Heisenberg
model (A = 1) for this case. Despite the fact that no exact results existed

for XXZ-model chains with s > %, the prevailing opinion prior to the work of
Haldane was that the s = } phase diagram discussed above was probably also
valid for arbitrary spins. This belief was supported by the analysis within
the framework of the spin-wave approximation. Furthermore, as we have seen
above, the transition between the two s = % antiferromagnetic phases occurs at
A = 1, precisely where the symmetry of the Hamiltonian of Eq. (3b) changes. A
naive (and ultimately spurious) extension of the universality principle which
seemed to underlie this s = } transition to higher spins, then indicated that
the s > 1 situation would in all likelihood be similar.

It thus came as a considerable surprise when Haldane con _]'ectured29 that a
fundamental qualitative difference exists between the integer-spin and the
half-odd-integer Heisenberg chains. Based on a mapping of the Hamiltonian of
Eq. (3b) to the nonlinear o-model, he predicted the existence of a new
disordered (p = 0) ground state, in which the correlations decay exponentially
to zero at large distances and for which there is a gap in the excitation
spectrum, e(k=n) =# O. More specifically, it was postulated for the
integral-spin XXZ chains in 1-d that the antiferromagnetically ordered
Ising-like phase which exists at large anistropy (A >> 1) would disappear as A
was reduced to some critical value Ac > L For A; < A < Ac a new

nondegenerate disordered phase (the Haldane phase) was proposed, with a gap in
the excitation spectrum and exponentially decaying correlations. Finally, for
some range of values A < A; (< 1) a gapless critical XY-like phase (with

algebraically decaying correlations) may also appear, similar to the
corresponding s = 3 phase for |A] < L

Although the initial controversy that greeted Haldane’s conjecture is
still not completely settled, most developments since then have lent support

to it. For example, Lieb, Schultz and Mattis % had much earlier given a
rigorous proof of zero gap in the excitation spectrum of the $ = é Heisenberg
chain in 1-d. This proof has since been extended to arbitrary

half-odd-integral values of s after Haldane’s conjecture, but was also shown
to fail for integral s. The conjecture has also been strongly supported b
several Monte Carlo and exact diagonalizations of finite spin-one chains,

and even by experimental results on such quasi-one-dimensional compounds as
CsNiCl3 mentioned in Sec. I. A recent review of the status of the Haldane .gap

has been given by Aff leck.>®

Finally, we note that in view of the nonintegrability of the 1-d XXZ
model, or indeed of the pure A = 1 Heisenberg model, for the s = 1 case, other
classes of s = 1 model Hamiltonians have also been studied. Of particular
interest for present purposes is the class which comprises an arbitrary
admixture of isotropic Heisenberg and biquadratic exchange, with Hamiltonian
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given by

N

H = Z [cosw (2 .2 ) + sinw (-s) -g. )2] ; s=1, (19)
121 i i+l 1 i+l

which contains the pure Heisenberg model considered by Haldane?® as the
special case w = O (point H in Fig. 1). Although it is known that that region
n/2 < w < sw/4 is ferromagnetic, the rest of what is almost certainly a rich
and interesting phase diagram is certainly not known for this 1-d Hamiltonian.
Nevertheless, tantalizing glimpses are provided by some known exact results
since, remarkably enough, it contains some integrable models as special cases.
Some of these have been indicated in Fig. 1.

For example, the case w = mn/4 (point L in Fig. 1) corresponds to the

integrable Schrédinger permutation model studied by Lai and Sutherland; and
the case w = -m/a2 (point T in Fig. 1), which -corresponds to the

ferromagnetic L

B

Fig. 1. A schematic indication of some of the known results for the
ground-state phase diagram of the spin-1 quantum spin chain with
Hamiltonian of Eq. (19), containing an arbitrary admixture of
Heisenberg and biquadratic exchange. The labelled points refer to
specific models discussed in the text.

Takhtajan-Babujian model is also solvable by Bethe-ansatz techniques, and
can be s_l}own to have zero gap. The exact ground state for the speciéaé case
w = tan (1) (point A in Fig. 1) was also solved by Affleck et al., who
showed it to have a nonzero gap in the energy spectrum. Unlike the previous
Bethe-ansatz ground-state solutions, this latter model has an exact ground
state which can be written down simply in terms of ‘valence bonds’. Finally,
we note that the antiferromagnetic pure biquadratic s = 1 model, corr'es%%mding
to the case w = —%n (point B in Fig. 1), is also partially integrable. In
particular, its exact g.s. energy and excitation spectrum have been found by
an exact mapping onto a special case of the s = % XXZ-model Hamiltonian in
1-d.
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In concluding this brief review, we hope that the above discussion has
convinced the uninitiated reader that the discrete quantum spin chains in 1-d
and lattices in d > 1 are systems which exhibit complex and interesting
quantum-mechanical behaviour. We believe that they are prime candidates for
study by the many-body techniques which have proven so successful for other
condensed matter systems. In the remainder of this paper we describe the
application to them of the coupled cluster method (CCM). We focus here wholly
on the s = % system since they have most exact results available for
comparison. We therefore first study the 1-d XXZ-model Hamiltonian of Eq.
(3b), and after demonstrating that the technique is capable of giving
interesting results, we extend the calculations to the corresponding square
lattice in 2-d, where almost no exact results are known. We intend in future
work to extend the method further to deal with the s = 1 chains described by
the Hamiltonian of Eq. (19) and other similar models.

3. CC TREATMENT OF THE GROUND KET STATE

For the spin—% systems to which we henceforth _)restrict ourselves, it is
convenient to introduce the Pauli spin matrices % = 25k on each site k of the

chain.  Furthermore, we introduce the usual raising and lowering operators,
albeit with a nonstandard normalization factor,

o = 1™ = io-i:) ) (20)

The commutator relations equivalent to those in Eq. (1) are

-t _ _ 2 z . <
[ok,crel = a‘kakz 5 [crk,oe] N tZo'kake . (21)

In common with many other quantum-mechanical calculations, an essential
feature of the CC approach is that the many-body correlations are referred to
some model state, |4>>. This is often chosen to be the ground state that the
system would otherwise attain when the interactions or some part of them are
turned off. In the CCM, the model state |®> may be chosen rather generally.
The one essential property for the standard formulation of CC theory is that
[d>> is a cyclic vector. We thus assume that the algebra of all operators in
the full many-body Hilbert space ¥ is spanned by the two subalgebras of
creation and destruction operators defined with respect to the model state
]<I>>. We assume further that these two subalgebras and the state |®> are
cyclic in the sense that all of the ket states in ¥ can be constructed as
linear combinations of the states reached by operating on |®> with the
elements of the creation-operator subalgebra; and similarly for the bra states
with respect to the state <<I>| and the elements of the destruction-operator
subalgebra.

For purposes of the present paper we work wholly with the Néel state as
our model state ld>>, namely the exact ground state for the Ising
antiferromagnet (A > ). For the 1-d spin-} chain to which we initially
restrict ourselves, this is the state [— + - + - ...> in which half of the
spins, say on the odd sites i = 2n-1 are in the down state |—> with respect to
the z-axis as quantization axis, and the remaining spins, say on the even
sites i = 2n, are in the up state |+>,

of|+> = x|, ¢i|:>=|:>, ot|:r>=0. (22)

It is very convenient’ for future notational purposes to carry out a
rotation of the spins on all the even sites only by an angle m about the
x-axis, so that the Néel state in this rotated (or Néel) basis has the
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representation,
[> = |- - - - - ...>; Néel basis . (23)

More generally, on even sites only we make the transformation,

- + 5 -
6. 30, O 0., 0 >-00 ; n=12,.. . (24)
2n 2n 2n 2n 2n 2n

In this basis the s = 3 XXZ-model Hamiltonian of Eq. (3b) becomes,
X z Z + + - -
H = —iIZI[AO‘XO‘“l + 2[0‘10‘“1 + cr]crlﬂ]] , (25)

and the operators (0‘:} and {0;) now represent, for all values of -i, creation

and destruction operators respectively with reference to the Néel model state.
Henceforth, all of our calculations and definitions are given in terms of
operators in this Néel basis in which, for example, the z-component of total
spin from Eq. (4) is now given for a system of an even number, N = 2M, of
spins as,

S-ifen, ) @9

We now introduce the usual CC parametrization for the exact N-spin ground
ket state |¥>, namely,

|o> = e”|®>, (27
in terms of a cluster correlation operator S which may be expressed wholly in
terms of creation operators. Thus, the m-body partition Sm of the cluster

operator S,

s= Vs , (28)

has the following general form for the s = % case in 1-d which we consider
first,

ro..r i i+ i+4r_ " i+r

N

{m) +

Z s s o . ¢ 5 (29)
r .

<...<r 12 m-1 1 2 m-1

m:

We note that the m-body coefficients {s:m: N } in Eg. (30) are
127 m-1

independent of the site index i due to the translational invariance impliedz by
the periodic boundary condition. Furthermore, in view of the fact that [sT,H]

= 0 for the XXZ Hamiltonian under considerzation, we henceforth restrict
ourselves only to states with quantum number s; = 0, as is the case for the

model Néel state |&>. This immediately restricts the sum in Eq. (28) to run
only over even values of m, and it also puts further restrictions on the

coefficients s(m) }, implied by the fact that we only consider
T 4
m-1

3

configurations in Eq. (29) in which as many spins on even sites as on odd
sites are reversed (with respect to the model Néel state).

46



Although the above CC parametrization is exact, in practical applications
we shall need to truncate the total possible number of cluster configurations
in Eq. (29), in order to have tractable calculational schemes. Several such
truncation schemes immediately suggest themselves. In the first place we
consider the well-known so-called SUBn scheme in which in Eq. (28) we retain
only those partitions of the cluster operators with m = n and set to zero the
remaining cluster operators Sm with m > n. This scheme has been widely

applied in various areas of condensed matter theory (and see, e.g., Refs.
11-18), and has been found to be very accurate indeed (for other than
hard-core repulsion interaction potentials) for many purposes. In the present
case, the SUB2 approximation, for example, amounts to replacing Eqgs. (28) and
(29) by,

+ +

c o
2m-1 1 i+2m-1

b ; M = integer part of (N+2)/4

SUB2

1
nW~1=
I~

3

(30)

+ +
boo 5

r i I+r

n
| [~

-

gar

i
where the notation Zo indicates a summation over the positive odd integers.
The full SUBZ calculation thus involves a determination of the parameters {(b ;

r

r = 1,3,5,...} as N 5> o. A further truncated SUB2-n subapproximation scheme
involves Kkeeping only the set of coefficients {bl_; r = 1,3,5,...,n-1} with n

even, by truncating the sum over m in Eq. (30) at the value %n.

The SUBn approximation scheme is by no means the only truncation
hierarchy __that we can envisage. The analysis of Faddeev and his
coworkers”™  in terms of kinks suggests that rather than counting the total
number n of "wrong" spins (defined, as always, with respect to the Néel model
state |®>) as in the SUBn scheme, we might concentrate attention instead on
the total number of "kinks". Such idgas lead us naturally to the so-called
PSUBn scheme in which at the given n~ level of approximation we keep only
those configurations with no more than n "plagueties". Each plaquette (or
"domain") is defined to be a contiguous chain of wrong spins (of arbitrary
length), which is terminated at each end by a "kink" (or "domain wall") which
delimits it from any other plaquette present. Thus, by definition, each
plaquette is separated from every other plaquette on the chain by at least one
intervening "correct" spin (i.e., one unaltered from its Néel-state

configuration). In the PSUB1 scheme, for example, the cluster operator is
approximated as
N N/2 . .
Spsum = Z Z B %1% vz " Trezma
i=1 m=1
(31

y P o
gp 1oi+l i+2 77 iep-1
P

where the notation ze now indicates a summation over the positive even

integers. A further truncated PSUBl-n subapproximation scheme involves
keeping only the single plaquettes up to length n, where n is even, i.e., only
those coefficients (gp; p = 2,4,6,...,n}.

Finally, considerations of the importance of the localized nature of the
interactions amg or the excitations lead to the so-called LSUB-n scheme, in
which at the n~ level we keep only those configurations in Eq. (29) in which
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spins are reversed (in all possible combinations compatible with s: = 0) only

over a "locale" of up to size n, where n now labels an even number of adjacent
sites. It is clear that the LSUB-2 approximation in 1-d is hence identical to
both the SUB2-2 and PSUBI-2 approx1mat10ns The LSUB-4 and LSUB-6
approximations on the other hand contain all sT = O configurations for the

cluster correlation operator S involving up to four and six adjacent sites
respectively, namely,

N .
+ + + + + +
S = z bo*o‘ +boco +gococ o O R (32)
LSUB-4 L +1 31 1+3 4 1 i+l 1+2 1+3
N +
+ + + + + + +
S = Z boo +f oo c +f o o
LSUB-6 LSUB 4 L 5 1 i+5 1271 i+3 i+4 145 141 i+2 143 i+5
+ + + + + 4 + +
+f o [ +f oo o o
23 i i+l i+4 i+5 3871 i+l 1+2 145
+ + + + + +
+gococ 6 O 0 O : (33)
6 1 i+1 1+2 i+3 i+4 1i+5

The interested reader might be amused to consider other approximation schemes,
but we restrict ourselves here to the three schemes outlined above.

Regardless of the particular approximation scheme used, the actual CC
methodology is now the same. We follow what is by now completely standard
practice. Thus the g.s. Schridinger equation, H]\Il> = Eg]\[l>, is first written

in the form,

Ale> = E e, (34)

where for an arbitrary operator A we define the similarity transform R as,

A=e SAeS . (35)

Secondly, the transformed equation (34) is then projected with the model bra
state <®| and with the bra-state hermitian adjoints of each of the
configurations contained in the particular approximation for the cluster
operator S. In this way we obtain the relation,

E = -}N(& + 2b) , (36)
g 1

for the g.s. energy, where b1 = 5;2) as above, and a set of coupled nonlinear
algebraic equations for the various cluster configuration coefficients. The
actual evaluation of these equations is completely straightforward, if
somewhat tedious in +practice._ If we write the XXZ Hamiltonian of Eq. (25) in
the form H = H[(ol),{o-?},(cl}], it is clear that its corresponding transform

is I = H[(&;),{&T},(&;}]. Furthermore, the comparable similarity-transformed

basic spin operators may be evaluated for arbitrary cluster operator S of the
form of Egs. (28)-(29) as,
o = o‘f 5 ¢ = o*? + [o‘z,S],
i i i i 1
(37)

9
i}

0'; + [0‘;,81 + %[[o},S],S] ;

48



Equation (37) demonstrates that the actual equations that need to be solved in
any of our CC approximation schemes are of the form of coupled multinomial
equations of at most fourth order.

For example, the full SUB2 equations may be readily evaluated to give,

=0, (38a)

[os)
2Ab—1+5b2-2Zb (b +b ]
1 1 i 2n-1 2n-1 2n+1

o
206, +4bb -3 b {b +b
2m-1 Uzm-1 2 L “zn-1|2me2n-1] | 2m-2n+1|

b +b ]=0; m= 2. (38b)
2m+2n-1 2m+2n-3

The lowest subapproximation, SUB2-2, gives immediately from Eq. (38a),

3bf +28b -1=0; SUB2-2, (39)

and hence, from Eq. (36), the corresponding estimate for the g.s. energy,

E

g _ A 3 3 .
N = -ﬁ[l + 2 sgn(h) {1 + Xz-] ] ;  SUB2-2, (40)

Equation (40) has the exact asymptotic form for large A given by Eq. (7b).
Interestingly, it is also exact at the transition point (A = -1} to
ferromagnetism, where Eg/N = -}. For the Heisenberg (A = 1) and XY-planar

(A = 0) cases, the SUB2-2 results are Eg/N = -5/12 = -0.417 and -V3/6 ~ -0.289

respectively, which may be compared with the corresponding exact results from
Egs. (7a) and (9) of -0.443 and -0.318, to the same number of significant
figures.

The SUB2-n subapproximations to Eg/N may also be evaluated for higher

values of n, and what is most encouraging to find is how extremely rapidly
convergent these estimates are with increasing n, at least for 4 > 0.

Furthermore, and perhaps even more interesting, is the fact that the full SUB2
equations (38a,b) can also be solved exactly by Fourier transform techniques.
We obtain the explicit solution,

b K nd Y 2(1)5 cosl(m-3)x1 =~ .,
2m-1_§ln * o0 1% cos(3x) -

(41)
(1+28b +2b%)
k=40 +2b), kzs——‘—z‘—
(A+2b1)
By putting m = 1 in Eq. (41) we obtain a self-consistent equation for the
coefficient bl. In this way we obtain, for example, the exact asymptotic

limit of Eq. (7b), and the value Eg/N ~ -0.419 for the Heisenberg (A = 1)

chain. More importantly, we also find that the self-consistent equation for
bl has a (real) solution only for values A = Ac = 0.37275, and hence that

there exists no SUBZ2 solution for smaller values of A. The estimates for Eg/N

as a function of A are compared in Fig. 2 with the exact value. The
terminating point of the SUB2 solution is indicated by the point marked T.
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Fig. 2.
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Asymptote —

The ground-state energy per spin, E /N, as a function of the
g

anisotropy parameter A for the spin-} quantum spin chain with
XXZ-model Hamiltonian of Eq. (3b). The curves labelled SUB2-2, SUB2,
PSUBI and LSUB-4 are the results of the present work using various CC
truncatsiggz schemes discussed in the text. The terminating point (at
A = Ac ~ 0.3728) of the SUB2 approximation is indicated by the

point marked T. The exact results in the ferromagnetic (A < -1) and
antiferromagnetic (A > -1) regimes are also shown, together w1th the
exact A » o asymptotic form of the latter, E /N > -} + A ). The

Néel result, Eg/N = —iA for the perfect classxcal antiferromagnet is

also indicated.



The absence of a solution for A < AS"®? is a clear signal of a phase
c

transition in the physical system, although without further evidence it is
impossible to rule out that the SUB2 approximation simply breaks down for
nonphysical reasons in this regime. However, even at this juncture, where we
only have a knowledge of the ground ket state, there is further evidence that
strengthens our belief that the terminating point of the SUB2 solution is
indeed approximating the actual phase transition at A = 1 from the ordered
antiferromagnetic phase (A > 1) to the critical phase (A < 1). Thus, closer
analysis of the two-reversal -coefficients (bn} from Eq. (41) shows the

asymptotic behaviour,

ag—Zm; A > ASUBZ
— c (42)
2m-1 m->® -2 SUB2
ym A=A 3

where « and £ are functions only of A, and ¥ is a constant. This changeover
from exponential to algebraic decay is clearly reminiscent of the comparable
behaviour of the exact correlation function g, at the exact transition point

A = 1, as given by Eq. (12). We return to a discussion of the SUB2
approximation for gn in Sec. 5, after we have considered the corresponding

approximation to the ground bra state in Sec. 4.

We turn our attention next to the PSUBI approximation of Eq. (31), where
the equations for the coefficients {g } can be evaluated as,
n

1 +ag +3¢-g =0, (43a)
m-1
B~ An; 8n€omezn ~ Bomez * 2ME,E,,
m-1
+-8 ) nzz 8,8 ,, =0; m=2. (43b)

The corresponding g.s. energy is again given by Eq. (36), with b1 = g,
Although we have not sought an exact solution to this set of equations (for
the infinite chain, N - «), they may again readily be solved numerically for
any PSUBl-n subapproximation. As shown in Table 1, this sequence of
subapproximations is also rapidly convergent with increasing n, for all values

of A. The numerical results for E /N are also shown in Fig. 2, where we
g

clearly observe the superior accuracy of the PSUBI approximation over the SUB2
approximation for essentially all values A > Ac with which comparison can -

be made. Nevertheless, for smaller values of A, the PSUBI approximation both
shows no sign of terminating and becomes increasingly inaccurate.

Finally, we turn our attention to the LSUB-4 approximation of Eq. (32),
for which the equations for the cluster coefficients can be evaluated as,

1-20b -3b%+2bb +2b°+2g =0, b>-4Ab -4bb +g =0,
1 1 13 3 4 1 3 13 4
8 5 (44)
A(b1+2blb3) —g4(A+4b1+b3)—2blb3=O.

Although the LSUB-4 approximation contains only three coefficients, it would
appear include the most important configurations of both the previous SUB2
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Table 1. The g.s. energy per spin, E /N, for the infinite (N 5 ®) 1-d spin-}
g

XXZ-model chain for various values of the anisotropy parameter A4,
and calculated in various PSUBL-n subapproximations. Also shown are
the corresponding exact values.

E /N
g

PSUB1-2 PSUBI-4 PSUB1-6 PSUBI-8 PSUBI-10 Exact

5.0 -1.29858 -1.29944 -1.29947 -1.29947 -1.29947 -1.29950
2.0 -0.60762 -0.61436 -0.61509  -0.61517 -0.61517 -0.61722
1.0 -0.41667 -0.42966 -0.43099 -0.43111 -0.43111 -0.44315
0.0 -0.28867 -0.28867 -0.28867 -0.28867 -0.28867 -0.31831
-1.0 -0.25000 -0.16491 -0.17599 -0.17525 -0.17529 -0.25000

and PSUB-1 approximations for the exact cluster operator S, in view of the
rapid convergence of the subapproximation sequences in both cases. It is
therefore perhaps to be expected, at least for values of A > 0, that it is our

most accurate approximation. This is borne out in Fig. 2, and some typical
results are shown in Table 2.

In view of the very small number of independent cluster configurations
contained at the LSUB-4 level, nor is it perhaps surprising that this
approximation shows no sign of a terminating point or of any other signal of
the phase transition at A = 1. On the other hand, what is much more
unexpected is the fact that the approximation seems also to track the exact
g.s. energy quite well across the sharp first-order transition into the
ferromagnetic regime (A = -1), as can clearly be observed from Fig. 2. At the
moment, however, we have no clear understanding of whether this is a real
physical effect or a mathematical coincidence.

4. CC TREATMENT OF THE GROUND BRA STATE

For reasons that have_been well described both in an earlier volume in
this series”™ and elsewhere, the CCM provides a biorthogonal rather than an
orthogonal parametrization of the many-body wavefunctions. Thus, the
respective bra and ket eigenstates are not kept as the manifestly hermitian
conjugates of each other. Rather, the corresponding bra ground state <\'I7| to
| >, where <¥|H = Eg<\f/|, is parametrized in the normal CC scheme as,

<¥| = <q>|§e“s ; (45)

where § is a new correlation operator. It is decomposed entirely in terms of
destruction operators {o-l), in complete analogy to the way that the ket-state

operator S was decomposed in Egs. (28) - (29) in terms of creation operators,
~ N ~
§=1+)8 , (46a)
m
m=1

N N
§ = sm cC. O, .0 : (46b)
m r r_..r i i+ i+r i+r
i=1 r <r_<..<r 12 m-1 1 2 m-1
1 2 m-1
We note that the particular value of the constant term in Eq. (46a) implies
the manifest normalization <¥|¥> = 1 (= <®|¥>). Thus, the g.s. expectation
value of an arbitrary operator A can be expressed as,
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Table 2. A comparison of the LSUB-4 approximation and exact results for the
g.s. energy per spin, Eg/N, for the infinite (N » o) 1-d spin-}

XXZ-model chain for various values of the anisotropy parameter A.

E /N
g
A
LSUB-4 Exact
5.0  -1.29947  -1.29950
2.0 -0.61552  -0.61722
1.0 -0.43627  -0.44315
0.0  -0.31934  -0.31831
-1.0  -0.32110 ~0.25000
-2.0  -0.50482  -0.50000
R = &S, S 22 g
A = <V|A|®> = <¢[Se “Ae”|®> = <¢|SA|o> . (47

exact operators S and S must preserve the

It is also clear that although the £
/<‘I/|\IJ>, subsequent approximation schemes

hermiticity relation, <¥| = (]|¥)
usually will not. -

In practical implementations of the CCM, the cluster operator S is
truncated in exactly the same way as for the operator S. Thus, a given CC
approximation scheme keeps only a selected subset of creation configurations
from the expansion for S iq_ Eqs. (28)-(29), the operator strings for which we
denote generically as (CI}; and precisely the same subset of their

hermitian-conjugate destruction counterparts {CI} for the operator S§. It is

then not difficult to show?'9 that the bra and ket g.s. Schrédinger equations
are~c_9§1p1§tely equivalent to the requirement that the expectation value, H =
<®|Se “He”|®>, of the Hamiltonian should be stationary with respect to each of
the coefficients of the set of configurations in S and §.

As a concrete example, the SUB2-approximation counterpart to Eq. (30) for

the operator S is,

N M
SSUBZ =1 +iZl mz b2 oo ; M = integer part of (N+2)/4 . (48)

= m-1 i i+2m-1

In SUB2 approximation the g.s. energy expectation value H is now a f unctional
of both sets of amplitudes {b2n|1 l) and {bzm_l). The stationarity of H with

respect to EZm_l gives the equations,
oL -S., S
<d| Z 0O e He |$>=0; m=1, (49)
i=1

which lead precisely to the earlier coupled set of nonlinear equations (38a,b)
which determine the coefficients (bzm-x)' Similarly, the stationarity of H

with respect to b2m-1 gives the equations,

N
<@]§e_S[H, Z oo ]esld» =0; m=1. (50)
21 i i+2m-1

Equations (50) have the form of a coupled set of linear equations for the
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coefficients {SZm—l}' in terms of the coefficients (me_l}, which are assumed

known.

It is worth pointing out that the g.s. energy calculated by the above
procedure, in any particular approximation scheme, is identical _to that
obtained from just the ket state ag iré Sec. 3, since the value of H at the

He

stationary point is just Eg = <d|e” |®> due to the stationarity conditions

with respect to the bra-state amplitudes. We also remind the reader that
although the g.s. energy has now been derived from a variational principle,
the corresponding estimate from an arbitrary truncation scheme will not in
general provide an upper bound to the exact result due to the lack of manifest
hermiticity.

We illustrate the above procedure only for the SUBZ2 approximation.
Explicit evaluation of Eq. (50) in this case leads to the counterparts for the
bra-state coefficients to Egs. (38a,b) for the SUB2 ket-state coefficients,

<]
§ +2(8 - 2)A+2b)b - 83 ZE b
ml ml 1 2m-1 mil o2 2n-1 2n-1

(51)
+. 2

n

b b +b +b +b =0;m=1.
2n-1( | 2m-2n-1| | zm-2zn+1 | 2m+2n-1 2m+2n-3

1r~18

1

In the first place these equations may be solved in any SUB2-n
subapproximation. For example, Eq. (39) together with Eq. (51) restricted to
keeping only the terms involving b1 and bl, yield the explicit SUB2-2

solutions,

b = 0% + 3% -, b = 18% + 3%, sus-z. (52)

Alternatively, Eqs. (51) can again be solved exactly by Fourier transform
techniques, to give the explicit SUB2 solution,

5 <DL i - Koosdo] “eosth coslmedind s m = 1 (53)
2m-1_EZt'er cos“(3x)| cos(4x) cosl(m-3)x]1; m=1,

where the constants k and k are as given in Eq. (41), and D is given by,
a1 (" 22 K 2 |
D = o Ltdx[l - k"cos (ﬁx)] [1 - 3cos (%x)] -1 (54)

It is again of interest to examine the asymptotic behaviour of the
coefficients me - We find,

~ aA-Zm; A> ASUB2
b — € (55)
2m-1 m->© SUB2

r A=A ;

H [+

where a and A are functions only of A, and T’ is a constant.

S. CORRELATION FUNCTION AND ORDER PARAMETER

Having obtained an approximate description of the bra and ket ground
states via any of the previously described CC truncation schemes, it is now
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straightforward to calculate arbitrary g.s. expectation values. For present
purposes one of the most interesting properties is the spin-spin correlation
function g defined in Eq. (10), and the associated order parameter of Eq.

(11). We recall that in the Néel basis in which all of our CC calculations
have been performed, the perfect Néel antiferromagnet described by the model
state |<I>> itself (i.e., with S » 0, § 5 1) has a constant unit correlation
function, g, > 1, and exhibits perfect long-range order. In the original

non-rotated basis this corresponds to g - (-1)", as given by the Ising limit
(A > w) of Egs. (12)-(13).

In view of the interesting terminating point exhibited by the SUB2
truncation scheme, we henceforth concentrate our attention on this
approximation. By inserting the parametrizations of Egs. (30) and (48) into
Eq. (10), we readily find that the SUB2 approximation for g, is given by,

«©

g =1-801- 6"°)mzl B, by, *t 4B b i SUBZ, (56)

We recall that the SUB2 coefficients {bn) and (En) are defined (in the s: =0

subspace in which we are working) only for odd values of n. Hence, Eq. (56)
demonstrates a peculiarity of the SUB2 approximation, namely that it gives a
g, which is constant (and equal to u) for all even values of n,
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Fig. 3. The order parameter p as a function of the anisotropy parameter A for
the spin-} quantum spin chain with XXZ-model Hamiltonian of Eg. (3b),
as calculated in the CC approximation SUBZ and its subapproximation
SUB2-2.
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o
=1-82‘B b ) (57a)
2m-

8, =M+ 4b 22-1b by £=21; SUB2
o AL'ZP’; A > ASUB2
== ¢ (57b)
i 5072 A = pSUB2 i
c H c

where the constants g, A and L depend on A, and where A and 8 are constants.
This behaviour, above and at the terminating point A = A:UM , may be compared
with the exact behaviour (in the non-rotated basis) in Egs. (12} and (13) on
either side of the phase transition at A = 1.

The order parameter u itself may also be calculated explicity in SUB2
approximation from Egs. (41) and (53)-(54). We find the result,

1 T 2 _%
1 - —I dx cos (%x)[l - kzcosz(éx)]
o
= . SUB2 . (58)

n -3
lJ' dx [l+sin2(£x)l[l-kzcosz[éx)] -1
R [}

The behaviour of this SUB2 approximation for the order parameter is shown in
Fig. 3. We observe that p actually takes unphysical values (u < 0) for va.'ls%%g
of A less than = 0.616, and approaches the limiting value b= -l as A > Ac
~ 0.373, rather than the physically expected p > 0 as A > 1. We note that the
occurrence of these unphysical values is basically due to the non-hermitian
nature of the approximated expectation value, i.e., that the bra and ket g.s.

wavefunctions are not hermitian-adjoint to each other. Nevertheless, the
crossover from exponential to algebraic decay at the terminating point
precisely imitates the exact behaviour at the actual A = 1 transition. We

also show in Fig. 3 the comparable SUB2-2 result,

w=ifanw’ s -0] 5 sz, (59)

which can be obtained by restricting the sum in Eq. (57a) to the m = 1 term
only, and by using Eq. (52).

6. EXTENSION TO THE 2-d SQUARE LATTICE

Finally, we turn our attention to the extension to lattices in higher
dimensions of the same spin-} XXZ-model Hamiltonian of Eq. (3a). The recent
discovery of high-temperature superconductors has greatly renewed interest in
this area. Thus, Anderson  has suggested that the s = } Heisenberg (& = 1)
Hamiltonian on a square lattice might provide an appropriate model for the
interactions . between .the electrons in the singly occupied d w orbitals on

. X -y
the copper atoms in these layered materials. As we have already discussed in
Sec. 2, very few exact results are known for the Hamiltonian of Eg. (3a) in
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dimensionality greater than one. However, it is now widely believed, on the
basis of numerical work using both exact diagonalizations on small clusters
and Monte Carlo calculations of various kinds (see, e.g., Ref. [41] and
references cited therein), that the spin-} Heisenberg model on the square
lattice shows a staggered magnetization of approximately 607 .of the
corresponding classical value.

Nevertheless, to the best of our knowledge, no rigorous proof concerning
long-range order for the 2-d square-lattice Heisenberg model has ever been
given, although it is known that this model is disordered at any nonzero
temperature. The strongest results of which we are aware are the recent
proofs, = based on various sum rules and bounds on correlation functions, that
the s = 3 XXZ model in 2-d does have long-range order for A > 1.78. (We note,
however, that this proof certainly does not preclude the existence of
long-range order for smaller values of A.). Finally, it is also known™ that
the ground state of a discrete spin-3 system is nondegenerate (and hence
sT = 0) in any number of dimensions and for any lattice which may be

decomposed into two equivalent sublattices with antiferromagnetic
(ferromagnetic) Heisenberg interactions between spins on different (the same)
sublattices. In this context we remark only that the singlet nature of the
ground state does not, of course, exclude the possibility of long-range order.

| |
- - ey | b
eI Io 1
|
w=6,d=6

— 9,

Fig. 4. A graphical illustration of the seven "wrong spin" configurations
(with respect to the model antiferromagnetic Néel state) retained in
the full LSUB-4 CC approximation scheme, for a spin—% quantum spin
system on the 2-d square lattice. The amplitude of each
configuration contained in the correlation operator S associated with
the ground ket state is as indicated to the right of each diagram.
The corresponding ~parameters w and d for each configuration are
described in the text.
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In principle, the extension of the CC techniques outlined in earlier
Sections to lattices of higher dimensionality is completely straightforward.
The only point that we wish to discuss concerns the approximation schemes to
be employed. In practice, this amounts to deciding which particular
“configurations” to keep in the expansions of the cluster operators S and S,
where each such configuration is defined in terms of a particular combination
of "wrong" spins with respect to the model (s: = 0) Néel state, just as in the

1-d case. For example, the analogues for the 2-d square lattice of the three
LSUB-4 configurations defined explicitly in 1-d in Eq. (32) are the seven
configurations denoted graphically in Fig. 4 in an obvious notation. These
are defined to be those s: = O configurations with up to four wrong spins over

any four contiguous sites on the lattice.

Although we cannot expect that the same configurations will be important
for all values of A, there are at least two physically appealing concepts
which we might intuit to play an important role, at least in the regime where
the quantum fluctuations have not destroyed the classical long-range order
present in the Néel state. The first of these is simply the number, w, of
"wrong bonds". In a classical picture the breaking of each bond in the
antiferromagnetic regime costs energy, and hence configurations with larger
values of w are expected to be weighted less. Secondly, an extension of the
seemingly important concepts in 1-d of locale size and the number of kinks
present, leads us to consider the length, d, of the "domain boundary" of a
given configuration. This is defined to be the number of lattice bonds
crossed by a shortest-path circuit (indicated in Fig. 4 by dashed lines) which
encloses all of the wrong spins. The weights w and d for each of the LSUB-4
configurations are indicated in Fig. 4.

Some of the results for the g.s. energy displayed in Fig. 5 certainly
seem to bear out the relevance of the above two criteria for estimating the
relative importance of the various configurations (namely, that those with
lowest values of w and d are more heavily represented in the g.s. ket
wavefunction), at least for values of A > 0.2. For example, the two curves

labelled LSUB-4’ and LSUB-4" are two different subapproximations to the full
LSUB-4 approximation, each of which includes only a subset of the seven
configurations shown in Fig. 4. Both subapproximations contain the single
SUB2-2 = LSUB-2 configuration (w=6, d=6) denoted by its amplitude bl. On the

one hand, the LSUB-4’ subapproximation then also includes the single extra
configuration of next highest importance by the above criteria, namely the
(w=8, d=8) square configuration denoted by the amplitude g:. On the other

hand, the LSUB-4" approximation includes the three lin%ar configurations
denoted by the amplitudes b (w=6, d=6), b; (w=8, d=10), and g, (w=10, d=10).

For the 2-d square lattice, the full SUB2 approximation (which includes
all possible s; = 0 configurations of two wrong spins) can again be solved by

Fourier transform techniques. The corresponding SUB2 results for the g.s.
energy are also shown in Fig. 5, where we observe Sthat this approximation
again has a terminating point (labelled T), at A = Ac ~ 0.795, similar to

that in the 1-d case. We note that the LSUB-4’ subapproximation similarly
terminates (at the point labelled T‘) for the 2-d lattice, so that there is no
real solution in this case for A < -1.370.

The actual numerical results for the g.s. energy per spin, Eg/N, for the

spin—% isotropic Heisenberg model (A = 1) on the spin lattice, .in various CC
approximation schemes, are as follows: -0.648 (SUB2-2); -0.652 (SUB2); -0.650
(LSUB-4"); -0.653 (LSUB-4‘); and -0.664 (full LSUB-4). These results may be
compared both with the corresponding approximation of -0.658 from spin-wave

58



-1.8 -10 A— 10 1.8

0
Q0 —A
/

/

-— —/‘_.‘\
AN - /‘//'/\‘
-05— ‘/—*' S8 P A
/ i/
i , //

- / / J—LsuB-4"

/ ;
/ sSuB2-2—~, / 5
/ Asymptote —-

1

-1.0 |-

Fig. 5. The ground-state energy per spin, Eg/N, as a function of the

anisotropy parameter A for the spin-% quantum spin system on the 2-d
square lattice interacting via the XXZ-model Hamiltonian of Eq. (3a).
The dashed lines labelled "ferromagnetic" and Néel are the classical
ferromagnetic and antiferromagnetic results, Eg/N = iéA; and the

dotted curve indicates the exact A » « asymptotic form, E /N > —%A =
g

%A ! The remaining curves, labelled SUB2-2, SUB2, LSUB-4’ and

LSUB-4" are the results of the present work using the various CC

truncation schemes discussed in the text. The terminating points of

the SUB2 and LSUB-4’ curves, at A = 0795 and A = -1.370

respectively, are indicated by the corresponding points T and T’.
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theor‘y,20 and with what is currently the best available result, namely E /N =
g

-0.6692 * 0.0002, f‘r'cirln two independent calculations using the Green function
Monte Carlo method. It is clear that once again the various CC
approximations both converge extremely rapidly for values of A > 1, and give

good agreement with the very accurate results from large-scale stochastic
simulations.

7. DISCUSSION

We have demonstrated that the CCM can be adapted for use with discrete
quantum spin systems interacting via nearest-neighbour interactions of the
XXZ-model type, both for the 1-d chain and the 2-d square lattice, at least
for the spin-half case. Various practical truncation schemes have been
explored, some of which are similar to those used in other continuous extended
condensed-matter systems, and some of which are quite unique to these discrete
lattice modgls. A few of these were also considered by Roger and
Hetherington™ who calculated the g.s. energies in 1-d and 2-d for the case
A = 1. The method has now not only been shown to be accurate for the g.s.
energy, but also to be capable of giving valuable information on the
correlation function and order parameter, and hence on the physically most
interesting, and theoretically most difficult, questions of long-range order
and phase transitions. Furthermore, various of the approximation hierarchies
for incorporating the many-body quantum correlations allow us to make close
contact with other physical concepts or theoretical devices that have proven
to be valuable aids in describing these systems. Thus, we have already
discussed the relationship of the PSUBn scheme to the description in terms of
kinks due to Faddeev and his collaborators. It should also be clear to the
reader that the SUB2 approximation, has much in common with the resonating
valence bond description of the g.s. wavefunction proposed by Anderson.

In view of the demonstrated success of the CC methods described here, we
believe that it is of interest to pursue these applications further. In this
regard, at least five distinct extensions come immediately to mind. In the
first place, the extension to spin-one systems interacting via the same
XXZ-model Hamiltonians as discussed here and also the bilinear-biquadratic
Hamiltonians of Eq. (19), are of obvious interest, particularly in view of our
earlier discussion concerning Haldane’s conjecture. Secondly, we intend to
use the same methodology to explore such other similar models of current
interest as the t-J model and the Hubbard model. A third obvious extension
will be to explore the dependence of our results on the choice of model state.
While it is-clear that an exact CC calculation of the properties of the bra
and ket ground states is independent of the model state, the same truncation
scheme used with different model states can certainly lead to different
approximate results. In this regard it is of special interest to try to
tailor the choice of model state to a give phase, and indeed to approach a
particular phase transition from descriptions based on different model states.

Fourthly, we note that the present discussion has concentrated wholly on
g.s. wavefunctions and g.s. properties. It will certainly also be of interest
to apply to all of the previous systems the excited-state version of the CCM
due to Emrich. We should thereby, for example, be able to discuss the
presence or absence of a gap in the excitation spectrum. Of particular
inter(-:sstU B%n this context will be the behaviour of the excitation spectrum as
A > Ac in the SUB2 approximation. Finally, whereas the entire discussion

up until now has focussed entirely on the application of the so-called normal
coupled cluster method, we also intend to apply the related, but potentially
more pg\sngrful, version of CC theory -- namely, the extended coupled cluster
method.™ "
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