11 research outputs found

    Simulations of satellite Doppler wind observations

    Get PDF
    This study will involve two objectives: (1) to develop, through computer simulations, optimal satellite-based sensor scanning techniques for direct measurement of tropospheric winds on the meso- and synoptic scales; and (2) to construct simulations of remotely measured wind fields for assessing impact of such fields on the diagnosis and prognosis of atmospheric phenomena through the use of Observing System Simulation Experiments (OSSE). Using the LAWS Simulation Model (LSM), various global coverage scenarios have been investigated as part of an effort to define the optimal orbit, configuration and sampling strategies for observations of winds for use in global circulation models. Simulated data sets have been provided to GSFC, FSU and several LAWS team members. Particular emphasis has been on providing realistic cloud cover, cirrus backscatter, aerosol distribution and wind variance on scales less than 600 km. Progress is currently being made to incorporate other remote sensors (AIRS/AMSU, STIKSCAT) into the global OSSEs

    Doppler Lidar for Wind Measurements on Venus

    Get PDF
    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented

    Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform

    Get PDF
    Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus

    Wind measurements with a ship-based theodolite : an error analysis

    No full text
    Tracking a balloon with a single ship-based theodolite, is a method which has been used for a long time to determine the wind profile over the sea. There are two main sources of error: (a) the incorrect estimate of the height of the balloon and (b) the pitch and roll motions of the ship. In this paper the effects of both errors are investigated. The ship's motion is simulated with use of a transformation from a fixed (earth) to a moving (ship) coordinate system. Some examples are presented to illustrate the magnitude of these effects

    Doppler Aerosol WiNd (DAWN) Lidar during CPEX 2017: Instrument Performance and Data Utility

    No full text
    During 25 May–24 June 2017, NASA’s Doppler Aerosol WiNd (DAWN) lidar was flown on board a NASA DC-8 aircraft as part of the Convective Processes EXperiment (CPEX) airborne campaign based out of Ft. Lauderdale, FL. Central to DAWN’s deployment was the goal of obtaining high time and spatial resolution wind velocity measurements, particularly with respect to the convective life cycle. We describe the processes involved in deriving wind profiles from DAWN observations and evaluate the performance of DAWN in terms of data coverage, resolution and frequency. Comparisons with dropsonde wind measurements show an overall low bias of <0.20 m/s with a RMSD of ~1.6 and R2 > 0.92 for both u and v components for the data set as a whole (over 160 comparisons). From this CPEX experience, we find that the DAWN wind profiles are of high precision, ~30 m vertical resolution and with horizontal spacing as fine as 3–7 km, and rival dropsondes for horizontal wind coverage (aerosols and clouds permitting). Case studies illustrate the benefit of using the DAWN to investigate and characterize the dynamics of the tropical atmosphere over open ocean waters in conditions ranging from undisturbed to active convection

    An Instrumented Golden Eagle’s (Aquila chrysaetos) Long-Distance Flight Behavior

    No full text
    One-second-processed three-dimensional position observations transmitted from an instrumented golden eagle were used to determine the detailed long-range flight behavior of the bird. Once elevated from the surface, the eagle systematically used atmospheric gravity waves, first to gain altitude, and then, in multiple sequential glides, to cover over 100 km with a minimum expenditure of its metabolic energy
    corecore