14 research outputs found

    COTSAT Small Spacecraft Cost Optimization for Government and Commercial Use

    Get PDF
    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The prototype spacecraft, also known as CheapSat, is the first of what could potentially be a series of rapidly produced low-cost spacecraft. The COTSAT-1 team is committed to realizing the challenging goal of building a fully functional spacecraft for 500Kpartsand500K parts and 2.0M labor. The project's efforts have resulted in significant accomplishments within the scope of a limited budget and schedule. Completion and delivery of the flight hardware to the Engineering Directorate at NASA Ames occurred in February 2009 and a cost effective qualification program is currently under study. The COTSAT-1 spacecraft is now located at NASA Ames Research Center and is awaiting a cost effective launch opportunity. This paper highlights the advancements of the COTSAT-1 spacecraft cost reduction techniques

    The P323L Substitution in the SARS-CoV-2 Polymerase (NSP12) Confers a Selective Advantage During Infection

    Get PDF
    BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions

    Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial

    Get PDF
    Background: Concomitant administration of COVID-19 and influenza vaccines could reduce burden on health-care systems. We aimed to assess the safety of concomitant administration of ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine.Methods: In this multicentre, randomised, controlled, phase 4 trial, adults in receipt of a single dose of ChAdOx1 or BNT162b2 were enrolled at 12 UK sites and randomly assigned (1:1) to receive concomitant administration of either an age-appropriate influenza vaccine or placebo alongside their second dose of COVID-19 vaccine. 3 weeks later the group who received placebo received the influenza vaccine, and vice versa. Participants were followed up for 6 weeks. The influenza vaccines were three seasonal, inactivated vaccines (trivalent, MF59C adjuvanted or a cellular or recombinant quadrivalent vaccine). Participants and investigators were masked to the allocation. The primary endpoint was one or more participant-reported solicited systemic reactions in the 7 days after first trial vaccination(s), with a difference of less than 25% considered non-inferior. Analyses were done on an intention-to-treat basis. Local and unsolicited systemic reactions and humoral responses were also assessed. The trial is registered with ISRCTN, ISRCTN14391248.Findings: Between April 1 and June 26, 2021, 679 participants were recruited to one of six cohorts, as follows: 129 ChAdOx1 plus cellular quadrivalent influenza vaccine, 139 BNT162b2 plus cellular quadrivalent influenza vaccine, 146 ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine, 79 BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine, 128 ChAdOx1 plus recombinant quadrivalent influenza vaccine, and 58 BNT162b2 plus recombinant quadrivalent influenza vaccine. 340 participants were assigned to concomitant administration of influenza and a second dose of COVID-19 vaccine at day 0 followed by placebo at day 21, and 339 participants were randomly assigned to concomitant administration of placebo and a second dose of COVID-19 vaccine at day 0 followed by influenza vaccine at day 21. Non-inferiority was indicated in four cohorts, as follows: ChAdOx1 plus cellular quadrivalent influenza vaccine (risk difference for influenza vaccine minus placebo –1·29%, 95% CI –14·7 to 12·1), BNT162b2 plus cellular quadrivalent influenza vaccine (6·17%, –6·27 to 18·6), BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine (–12·9%, –34·2 to 8·37), and ChAdOx1 plus recombinant quadrivalent influenza vaccine (2·53%, –13·3 to 18·3). In the other two cohorts, the upper limit of the 95% CI exceeded the 0·25 non-inferiority margin (ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine 10·3%, –5·44 to 26·0; BNT162b2 plus recombinant quadrivalent influenza vaccine 6·75%, –11·8 to 25·3). Most systemic reactions to vaccination were mild or moderate. Rates of local and unsolicited systemic reactions were similar between the randomly assigned groups. One serious adverse event, hospitalisation with severe headache, was considered related to the trial intervention. Immune responses were not adversely affected.Interpretation: Concomitant vaccination with ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine raises no safety concerns and preserves antibody responses to both vaccines. Concomitant vaccination with both COVID-19 and influenza vaccines over the next immunisation season should reduce the burden on health-care services for vaccine delivery, allowing for timely vaccine administration and protection from COVID-19 and influenza for those in need

    The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection

    Get PDF
    Background The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. Results Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. Conclusions These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions

    Low Cost Rapid Response Spacecraft, (LCRRS) A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    Get PDF
    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for 500,000partsand500,000 parts and 2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained engineering team. The engineers on the team are capable of functioning in two to three engineering disciplines which allows highly efficient interdisciplinary engineering collaboration. NASA Ames is actively proposing mission concepts to use the COTSAT platform to accomplish science. If the COTSAT team validates this approach, it will allow the possibility for remote sensing missions to produce a high science yield for minimal cost and reduced schedule. Another aim of this approach is to yield an accelerated pathway from a Phase A study to mission launch. Leaders in the aerospace industry have shown interest in this methodology. Several visits and tours have been given in the lab. Although the concept of low-cost development is initially met with skepticism from some within the prohibitive aerospace industry, the project’s efforts have been highly praised for the accomplishments met within a limited time and budget. Overall the development has progressed tremendously well and the team is answering critical questions for current and future low-cost small satellite developments. COTSAT subsystems are not limited to a specific weight class and could be adapted to produce smaller platforms and to fit various launch vehicles

    SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection.

    No full text
    BackgroundSARS-CoV-2 remains rapidly evolving, and many biologically important genomic substitutions/indels have characterised novel SARS-CoV-2 lineages, which have emerged during successive global waves of the pandemic. Worldwide genomic sequencing has been able to monitor these waves, track transmission clusters, and examine viral evolution in real time to help inform healthcare policy. One school of thought is that an apparent greater than average divergence in an emerging lineage from contemporary variants may require persistent infection, for example in an immunocompromised host. Due to the nature of the COVID-19 pandemic and sampling, there were few studies that examined the evolutionary trajectory of SARS-CoV-2 in healthy individuals.MethodsWe investigated viral evolutionary trends and participant symptomatology within a cluster of 16 SARS-CoV-2 infected, immunocompetent individuals with no co-morbidities in a closed transmission chain. Longitudinal nasopharyngeal swab sampling allowed characterisation of SARS-CoV-2 intra-host variation over time at both the dominant and minor genomic variant levels through Nimagen-Illumina sequencing.ResultsA change in viral lineage assignment was observed in individual infections; however, there was only one indel and no evidence of recombination over the period of an acute infection. Minor and dominant genomic modifications varied between participants, with some minor genomic modifications increasing in abundance to become the dominant viral sequence during infection.ConclusionsData from this cohort of SARS-CoV-2-infected participants demonstrated that long-term persistent infection in an immunocompromised host was not necessarily a prerequisite for generating a greater than average frequency of amino acid substitutions. Amino acid substitutions at both the dominant and minor genomic sequence level were observed in immunocompetent individuals during infection showing that viral lineage changes can occur generating viral diversity

    Rapid selection of P323L in the SARS-CoV-2 polymerase (NSP12) in humans and non-human primate models and confers a large plaque phenotype

    No full text
    The mutational landscape of SARS-CoV-2 varies at both the dominant viral genome sequence and minor genomic variant population. An early change associated with transmissibility was the D614G substitution in the spike protein. This appeared to be accompanied by a P323L substitution in the viral polymerase (NSP12), but this latter change was not under strong selective pressure. Investigation of P323L/D614G changes in the human population showed rapid emergence during the containment phase and early surge phase of wave 1 in the UK. This rapid substitution was from minor genomic variants to become part of the dominant viral genome sequence. A rapid emergence of 323L but not 614G was observed in a non-human primate model of COVID-19 using a starting virus with P323 and D614 in the dominant genome sequence and 323L and 614G in the minor variant population. In cell culture, a recombinant virus with 323L in NSP12 had a larger plaque size than the same recombinant virus with P323. These data suggest that it may be possible to predict the emergence of a new variant based on tracking the distribution and frequency of minor variant genomes at a population level, rather than just focusing on providing information on the dominant viral genome sequence e.g., consensus level reporting. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions
    corecore