17 research outputs found

    Retinal ganglion cell topography and spatial resolving power in African megachiropterans: influence of roosting microhabitat and foraging

    Get PDF
    Megachiropteran bats (megabats) show remarkable diversity in microhabitat occupation and trophic specializations, but information on how vision relates to their behavioral ecology is scarce. Using stereology and retinal wholemounts, we measured the topographic distribution of retinal ganglion cells and determined the spatial resolution of eight African megachiropterans with distinct roosting and feeding ecologies. We found that species roosting in open microhabitats have a pronounced streak of high retinal ganglion cell density, whereas those favoring more enclosed microhabitats have a less pronounced streak (or its absence in Hypsignathus monstrosus). An exception is the cave-dwelling Rousettus aegyptiacus, which has a pronounced horizontal streak that potentially correlates with its occurrence in more open environments during foraging. In all species, we found a temporal area with maximum retinal ganglion cell density (∼5,000-7,000 cells/mm ) that affords enhanced resolution in the frontal visual field. Our estimates of spatial resolution based on peak retinal ganglion cell density and eye size (∼6-12 mm in axial length) range between ∼2 and 4 cycles/degree. Species that occur in more enclosed microhabitats and feed on plant material have lower spatial resolution (∼2 cycles/degree) compared with those that roost in open and semiopen areas (∼3-3.8 cycles/degree). We suggest that the larger eye and concomitant higher spatial resolution (∼4 cycles/degree) in H. monstrosus may have facilitated the carnivorous aspect of its diet. In conclusion, variations in the topographic organization and magnitude of retinal ganglion density reflect the specific ecological needs to detect food/predators and the structural complexity of the environments. J. Comp. Neurol. 525:186-203, 2017. © 2016 Wiley Periodicals, Inc

    Shared Pattern of Endocranial Shape Asymmetries among Great Apes, Anatomically Modern Humans, and Fossil Hominins

    Get PDF
    Anatomical asymmetries of the human brain are a topic of major interest because of their link with handedness and cognitive functions. Their emergence and occurrence have been extensively explored in human fossil records to document the evolution of brain capacities and behaviour. We quantified for the first time antero-posterior endocranial shape asymmetries in large samples of great apes, modern humans and fossil hominins through analysis of “virtual” 3D models of skull and endocranial cavity and we statistically test for departures from symmetry. Once based on continuous variables, we show that the analysis of these brain asymmetries gives original results that build upon previous analysis based on discrete traits. In particular, it emerges that the degree of petalial asymmetries differs between great apes and hominins without modification of their pattern. We indeed demonstrate the presence of shape asymmetries in great apes, with a pattern similar to modern humans but with a lower variation and a lower degree of fluctuating asymmetry. More importantly, variations in the position of the frontal and occipital poles on the right and left hemispheres would be expected to show some degree of antisymmetry when population distribution is considered, but the observed pattern of variation among the samples is related to fluctuating asymmetry for most of the components of the petalias. Moreover, the presence of a common pattern of significant directional asymmetry for two components of the petalias in hominids implicates that the observed traits were probably inherited from the last common ancestor of extant African great apes and Homo sapiens

    Cross-sectional area of the elephant corpus callosum: comparison to other eutherian mammals.

    No full text
    The current study reports our findings of the relationship between cross-sectional area of the corpus callosum and brain mass in over 100 eutherian mammal species. We were specifically interested in determining whether the elephant had a corpus callosum the size that would be expected for eutherian mammal with a brain mass of approximately 5000 g, or whether a different morphology had evolved. To answer this question we first analysed data from primates, other eutherian mammals and cetaceans, finding that primates and other eutherian mammals showed a positive allometric relationship between the two variables, such that larger brains had a relatively larger corpus callosum. Interestingly, primates have a slightly larger corpus callosum than other eutherian mammals, but showed a similar allometric scaling to this group. The cetaceans had a both absolutely and relatively small corpus callosum compared to other mammals and showed isometric scaling with brain mass. The six elephants studied herein had the largest absolute corpus callosums recorded to date; however, relative to the mass of their brain, the size of the corpus callosum was what would be expected of a typical eutherian mammal with a brain mass of approximately 5000 g. The data for elephants hinted at sexual dimorphism in size of the corpus callosum, with female elephants having both an absolute and relatively larger callosum than the males. If this observation is supported in future studies, the elephants will be the first non-primate species to show sexual dimorphism in this neural character. The results are discussed in both an evolutionary and functional context.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Magnetic resonance microscopy of iron in the basal forebrain cholinergic structures of the aged mouse lemur

    No full text
    Increased non-heme iron levels in the brain of Alzheimer’s disease (AD) patients are higher than the levels observed in age matched normal subjects. Iron level in structures that are highly relevant for AD, such as the basal forebrain, can be detected post mortem with histochemistry. Because of the small size of these structures, in vivo MR detection is very difficult at conventional field magnets (1.5 and 4 T). In this study, we observed iron deposits with histochemistry and MR microscopy at 11.7 T in the brain of the mouse lemur, a strepsirhine primate which is the only known animal model of aging presenting both senile plaques and neurofibrillary degeneration. We also examined a related species, the dwarf lemur. Iron distribution in aged animals (8 to 15 years old) agrees with previous findings in humans. In addition, the high iron levels of the globus pallidus is paralleled by a comparable contrast in basal forebrain cholinergic structures. Because of the enhancement of iron-dependent contrast with increasing field strength, microscopic magnetic resonance imaging of the mouse lemur appears to be an ideal model system for studying in vivo iron changes in the basal forebrain in relation to aging and neurodegeneration

    Topographical localization of iron in brains of the aged fat-tailed dwarf lemur (Cheirogaleus medius) and gray lesser mouse lemur (Microcebus murinus)

    No full text
    Iron deposits in the human brain are characteristic of normal aging but have also been implicated in various neurodegenerative diseases. Among nonhuman primates, strepsirhines are of particular interest because hemosiderosis has been consistently observed in captive aged animals. In particular, the cheirogaleids, because of their small size, rapid maturity, fecundity, and relatively short life expectancy, are a useful model system for the study of normal and pathological cerebral aging. This study was therefore undertaken to explore iron localization in the brain of aged cheirogaleids (mouse and dwarf lemurs) with histochemistry and magnetic resonance microscopy. Results obtained with both techniques were comparable. There was no difference between old animals in the two species. The young animals (3 years old) showed no iron deposits. In the old animals (8–15 years old), iron pigments were mainly localized in the globus pallidus, the substantia nigra, the neocortical and cerebellar white matter, and anterior forebrain structures, including the nucleus basalis of Meynert. This distribution agrees with previous findings in monkeys and humans. In addition, we observed iron in the thalamus of these aged nonhuman primates. Microscopic NMR images clearly reveal many features seen with the histochemical procedure, and magnetic resonance microscopy is a powerful method for visualizing age-related changes in brain iron

    Topographical localization of lipofuscin pigment in the brain of the aged fat-tailed dwarf lemur(Cheirogaleus Medius) and grey lesser mouse lemur (Microcebus Murinus): Comparison to iron localization

    No full text
    The present study was undertaken to explore the distribution of lipofuscin in the brain of cheirogaleids by autofluorescence and compare it to other studies of iron distribution. Aged dwarf (Cheirogaleus medius) and mouse (Microcebus murinus) lemurs provide a reliable model for the study of normal and pathological cerebral aging. Accumulation of lipofuscin, an age pigment derived by lipid peroxidation, constitutes the most reliable cytological change correlated with neuronal aging. Brain sections of four aged (8–15 year old) and 3 young (2–3 year old) animals were examined. Lipofuscin accumulation was observed in the aged animals but not in the young ones. Affected regions include the hippocampus (granular and pyramidal cells), where no iron accumulation was observed, the olfactory nucleus and the olfactory bulb (mitral cells), the basal forebrain, the hypothalamus, the cerebellum (Purkinje cells), the neocortex (essentially in the pyramidal cells), and the brainstem. Even though iron is known to catalyse lipid oxidation, our data indicate that iron deposits and lipofuscin accumulation are not coincident. Different biochemical and morphological cellular compartments might be involved in iron and lipofuscin deposition. The nonuniform distribution of lipofuscin indicates that brain structures are not equally sensitive to the factors causing lipofuscin accumulation. The small size, the rapid maturity, and the relatively short life expectancy of the cheirogaleids make them a good model system in which to investigate the mechanisms of lipofuscinogenesis in primates

    Topographical localization of lipofuscin pigment in the brain of the aged fat-tailed dwarf lemur (Cheirogaleus medius) and grey lesser mouse lemur (Microcebus murinus): Comparison to iron localization

    No full text
    The present study was undertaken to explore the distribution of lipofuscin in the brain of cheirogaleids by autofluorescence and compare it to other studies of iron distribution. Aged dwarf (Cheirogaleus medius) and mouse (Microcebus murinus) lemurs provide a reliable model for the study of normal and pathological cerebral aging. Accumulation of lipofuscin, an age pigment derived by lipid peroxidation, constitutes the most reliable cytological change correlated with neuronal aging. Brain sections of four aged (8-15 year old) and 3 young (2-3 year old) animals were examined. Lipofuscin accumulation was observed in the aged animals but not in the young ones. Affected regions include the hippocampus (granular and pyramidal cells), where no iron accumulation was observed, the olfactory nucleus and the olfactory bulb (mitral cells), the basal forebrain, the hypothalamus, the cerebellum (Purkinje cells), the neocortex (essentially in the pyramidal cells), and the brainstem. Even though iron is known to catalyse lipid oxidation, our data indicate that iron deposits and lipofuscin accumulation are not coincident. Different biochemical and morphological cellular compartments might be involved in iron and lipofuscin deposition. The nonuniform distribution of lipofuscin indicates that brain structures are not equally sensitive to the factors causing lipofuscin accumulation. The small size, the rapid maturity, and the relatively short life expectancy of the cheirogaleids make them a good model system in which to investigate the mechanisms of lipofuscinogenesis in primates

    A neuronal morphologic type unique to humans and great apes

    Get PDF
    We report the existence and distribution of an unusual type of projection neuron, a large, spindle-shaped cell, in layer Vb of the anterior cingulate cortex of pongids and hominids. These spindle cells were not observed in any other primate species or any other mammalian taxa, and their volume was correlated with brain volume residuals, a measure of encephalization in higher primates. These observations are of particular interest when considering primate neocortical evolution, as they reveal possible adaptive changes and functional modifications over the last 15–20 million years in the anterior cingulate cortex, a region that plays a major role in the regulation of many aspects of autonomic function and of certain cognitive processes. That in humans these unique neurons have been shown previously to be severely affected in the degenerative process of Alzheimer’s disease suggests that some of the differential neuronal susceptibility that occurs in the human brain in the course of age-related dementing illnesses may have appeared only recently during primate evolution

    A neuronal aging pattern unique to humans and common chimpanzees

    No full text
    Lipofuscin pigment accumulation is among the most prominent markers of cellular aging in postmitotic cells. The formation of lipofuscin is related to oxidative enzymatic activity and free radical-induced lipid peroxidation. In various mammals such as rat, dog, macaque as well as in cheirogaleid primates, most of the large neurons, such as cerebellar Purkinje cells and neocortical pyramidal cells, show heavy lipofuscin accumulation in adulthood. In contrast, a well-known yet poorly studied feature of the aging human brain is that although lipofuscin accumulation is most marked in large neurons of the cerebral cortex, the large neurons of the cerebellar cortex-the Purkinje cells-appear to remain free of lipofuscin accumulation. It is however, not known whether this characteristic of human Purkinje cells is shared with other primates or other mammals. This study reports results from histological observation of Purkinje cells in humans, non-human primates, and other mammals. Procedures include histochemistry, immunocytochemistry, and fluorescence microscopy. Abundant lipofuscin deposition was observed in Purkinje cells of all the species we examined except Homo sapiens (including Alzheimer's disease cases) and Pan troglodytes. In contrast, lipofuscin deposition was observed in neurons of the dentate nucleus. Our findings suggest that when compared with other primates, Purkinje cells in chimpanzees and humans might share a common aging pattern that involves mechanisms for neuroprotection. This observation is important when considering animal models of aging
    corecore