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ABSTRACT 

Megachiropteran bats (megabats) show remarkable diversity in microhabitat occupation and 

trophic specializations, but information on how vision relates to their behavioral ecology is 

scarce. Using stereology and retinal wholemounts, we measured the topographic distribution 

of retinal ganglion cells and determined the spatial resolution of eight African 

megachiropterans with distinct roosting and feeding ecologies. We found that species 

roosting in open microhabitats have a pronounced streak of high retinal ganglion cell density, 

whereas those favoring more enclosed microhabitats have a less pronounced streak (or its 

absence in Hypsignathus monstrosus). An exception is the cave-dwelling Rousettus 

aegyptiacus which has a pronounced horizontal streak that potentially correlates with its 

occurrence in more open environments during foraging. In all species, we found a temporal 

area with maximum retinal ganglion cell density (~5,000-7,000 cells/mm2), that affords 

enhanced resolution in the frontal visual field. Our estimates of spatial resolution based on 

peak retinal ganglion cell density and eye size (~6 – 12 mm in axial length) range between 

~2 and 4 cycles/degree. Species that occur in more enclosed microhabitats and feed on 

plant material have lower spatial resolution (~2 cycles/degree) compared to those that roost 

in open and semi-open areas (~3-3.8 cycles/degree). We suggest that the larger eye and 

concomitant higher spatial resolution (~4 cycles/degree) in H. monstrosus may have 

facilitated the carnivorous aspect of its diet. In conclusion, variations in the topographic 

organization and magnitude of retinal ganglion density reflect the specific ecological needs 

to detect food/predators and the structural complexity of the environments.     
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INTRODUCTION 

Megachiropteran bats (megabats) represent a diverse group of nocturnal flying mammals 

that occupy a variety of environments ranging from open grasslands to dense tropical 

rainforests (Kunz and Lumsden, 2003). In bright light conditions, megachiropterans roost in a 

wide range of microhabitats including exposed branches in tall trees, dense foliage and 

caves (DeFrees and Wilson, 1988; Acharya, 1992; Langevin and Barclay, 1990; Kwiecinski 

and Griffths, 1999). While roosting, they appear vigilant and often open their eyes to scan for 

predators (Jones, 1972; DeFrees and Wilson, 1988) (Fig. 1). In dim light, megachiropterans 

leave their roosting sites and forage for a variety of food items including fruit, young leaves, 

flowers, nectar and, to a lesser extent, insects and small vertebrates (DeFrees and Wilson, 

1988; Acharya, 1992; Langevin and Barclay, 1990; Kwiecinski and Griffhts, 1999). During 

foraging, megachiropterans display dexterity when manipulating food with their forearms and 

feet (Jones, 1972; DeFrees and Wilson, 1988; Kwiecinski and Griffhts, 1999), which 

suggests a role for vision in the guidance and control of praxic activities. Although vision 

plays an important role for megachiropterans, only limited information is available on their 

retinal topographic organization (Heffner et al., 1999; Müller et al. 2007; Heffner et al., 2008).  

Vegetation structure, foraging and predator detection represent key factors that may shape 

the variations in the topographic distribution of retinal ganglion cells. The location and 

magnitude of retinal topographic specializations, formed by retinal ganglion cells, indicate 

how the visual field is sampled with enhanced spatial resolution (Hughes, 1977; Collin, 

1999). Species that inhabit more open environments usually display more elongated 

patterns (streaks) of retinal ganglion cell distribution, which potentially allows for enhanced 

resolution across the horizon and can be particularly useful for the detection of predators 

(Hughes, 1977; Collin, 1999). In contrast, those species that occur in more enclosed 

environments generally show more concentric patterns (areas, foveas), which presumably 

allow for enhanced spatial resolution in a more localized region of the visual field and play a 

crucial role in foraging (Hughes, 1977; Collin, 1999). Among megachiropterans, previous 

studies have reported a combination of concentric and elongated patterns. In fruit bats 
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belonging to the genus Pteropus, variations in retinal ganglion cell density form a temporal 

area embedded in a weak horizontal visual streak, which potentially correlates with foraging 

and roosting at the top of tall trees in more open microenvironments (Beasley et al., 1985). 

In contrast, Rousettus aegyptiacus is reported to have only a temporal area with no 

indication of a horizontal streak, which may reflect its preference to roost in caves, whereas 

Eidolon helvum has a temporal area embedded in a weak horizontal streak potentially 

reflecting their occurrence in more open microhabitats (Heffner et al., 1999; 2008). Although 

these variations in the topographic patterns of retinal ganglion cell density appear to reflect 

the visual ecology of the few megachiropteran species studied to date, it is largely unknown 

to what extent this applies to other megachiropteran species, or whether there are shared 

retinal traits that may indicate a megachiropteran retinal organization blueprint.  

In the present study, we examined the eyes of eight megachiropteran species with different 

trophic specializations and microhabitat preferences (Table 1) to investigate whether 

variations in the topographic distribution of retinal ganglion cells and spatial resolving power 

reflect ecological parameters including roosting preferences and foraging behavior. We 

expected that megachiropteran species that roost predominantly in open microhabitats (E. 

helvum, E. franqueti, E. wahlbergi) will have a horizontal streak, whereas those roosting in 

more enclosed microhabitats (M. woermanni, C. argynnis, S. zenkeri and H. monstrosus) will 

have a more concentric organization of ganglion cell density. Moreover, we expected that 

spatial resolution will reflect differential foraging needs and luminance levels across species, 

being higher in those species that opportunistically feed on insects and smaller vertebrates 

and that roost in more open microhabitats.    
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MATERIALS AND METHODS 

Specimens 

Adult specimens, comprising eight megachiropteran species, were collected in the Yoko 

primary rainforest, near Kisangani, Democratic Republic of Congo (R. aegyptiacus n = 3, E. 

franqueti n = 3, C. argynnis n = 3, M. woermanni n= 3; H. monstrosus n = 2, S. zenkeri n=1), 

and in coastal (E. wahlbergii n = 3) or inland (E. helvum n = 2) Kenya. Appropriate 

permissions to capture the animals were obtained from the University of Kisangani, DR 

Congo, and the Kenya National Museums, Kenya. The specimens were humanely 

euthanized for unrelated physiological/anatomical studies and the eyes were made available 

for the present investigation. The harvesting and use of these specimens was approved by 

the University of the Witwatersrand Animal Ethics (2008/36/1) and the University of Western 

Australia Ethics (RA/3/100/927) Committees.  

 

Perfusion, tissue processing and preparation of retinal wholemounts 

In the field, the specimens were intracardially perfused with 0.9% saline followed by 4% 

paraformaldehyde in 0.1M phosphate buffer (PB, pH=7.2-7.4). After perfusion, orientation 

marks were made on the dorsal aspect of the cornea using a portable cautery device before 

the eyes were enucleated (Coimbra et al., 2013). Extraocular tissue was carefully removed 

and the axial length of the excised eyes measured using a digital caliper. Whole eyes were 

then post-fixed in the same fixative solution for 24 h. Fixation was stopped by transferring 

the eyes to 0.1M PB (pH= 7.2-7.4) containing 0.1% sodium azide.  

In the laboratory, retinal wholemounts were prepared and processed following standard 

methods (Stone, 1981; Coimbra et al., 2006). Briefly, the cornea and vitreous were removed 

and the retinas were dissected by making radial cuts from the periphery to the center of the 

eyecup. Sclera pieces were then removed and the retina was finally detached by severing 

the optic disc at its base using a scalpel blade. Remnants of retinal pigment epithelium 
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attached to the retinal wholemounts were bleached with 3% hydrogen peroxide in 0.1M PB 

for approximately 12 hours at room temperature (Coimbra et al., 2009).  

Retinal wholemounts were mounted vitreous side up onto a gelatinized slide for staining of 

cells in the retinal ganglion cell layer using the Nissl method. To improve the adherence of 

the retinal wholemount to the slide and to augment the differentiation of ganglion cells during 

the staining procedure, retinal preparations were incubated in formaldehyde vapors at room 

temperature overnight (Stone, 1981). Retinal wholemounts were then rehydrated, stained for 

5 minutes with an aqueous solution of 0.1 % of cresyl violet (Sigma), dehydrated in an 

ethanol series, cleared in xylene and finally mounted with Entellan New (Merck) (Coimbra et 

al., 2006). As the preparations were attached to the slides during all staining steps, 

shrinkage was considered to be negligible and confined to the borders of the ora serrata and 

the edges of radial cuts (Wässle et al., 1981; Peichl, 1992).  

 

Stereological assessment of the total number and topographic distribution of 

photoreceptors and retinal ganglion cells  

Using the optical fractionator method (West et al., 1991) with modifications for the use in 

retinal wholemounts (Coimbra et al., 2009), we estimated the total number and the 

topographic distribution of retinal ganglion cells in megachiropterans. Briefly, the retina was 

considered as one single section and therefore the section sampling fraction (ssf) was 1. As 

the retinal ganglion cell layer in all megachiropterans examined comprises a single layer of 

neurons, the optical disector height was the same as the thickness of the ganglion cell layer 

at all eccentricities, giving a thickness sampling factor (tsf) of 1. Therefore, only the area 

sampling fraction (asf), which is the ratio between the counting frame and the sampling grid, 

was used to estimate the total number of retinal ganglion cells according to the following 

algorithm: 

N total= ΣQ x 1/asf, 

Page 6 of 44

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



7 

 

where ΣQ is the sum of total neurons counted (West et al., 1991).  

The outlines of retinal wholemounts were digitized using a 4 x/NA 0.13 objective on a 

microscope (Olympus BX50) equipped with a motorized stage (MAC200; Ludl Electronics 

Products, USA) and connected to a computer running Stereo Investigator software 

(http://www.mbfbioscience.com, RRID: SciRes_000114). The retinal ganglion cell layer was 

outlined close to the limits of the retinal borders (at the ora serrata) and along the radial cuts, 

but excluding other retinal layers that can be seen in transverse view after wholemounting. 

The outline of the base of the optic disc was subtracted from the total retinal wholemount 

area.  

We used different sampling strategies to map the topographic distribution of ganglion cells in 

retinal wholemounts of the megachiropterans examined to account for differences in retinal 

area and neuronal density gradient (Table 1). Under macroscopic examination, we noticed 

that the retinal ganglion cell layer showed homogeneous staining indicating a shallow 

density gradient, so we opted to sample the entire retina with a single grid and counting 

frame size. Upon identification of the highest density region, we used a high frequency 

sampling scheme to confirm the magnitude and location of the peak density estimates. 

Sampling grids were placed in a random, uniform and systematic fashion covering the area 

of each contour. At each sampling site, only retinal ganglion cells that lay entirely within the 

counting frame or that intersected the acceptance lines without touching the rejection lines 

were counted (Gundersen, 1977).  These stereological parameters were chosen on the 

basis of pilot experiments to achieve a Schaeffer coefficient of error (CE) < 0.1, which is 

deemed appropriate in the present study because variance introduced by the counting 

procedures contribute very little to the observed group variance (Glaser and Wilson, 1998; 

Slomianka and West, 2005).  

To distinguish ganglion cells from amacrine and glial cells, we used well established 

cytological criteria proposed by Hughes (1981) and validated in a range of mammal species 

(Wong et al., 1986; Silveira et al. 1989a; Silveira et al., 1989b; Peichl, 1992; Mass and 
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Supin, 1992; Silveira et al., 1993; Mass and Supin, 2003; Hanke et al., 2009; Mass and 

Supin, 2010; Coimbra et al., 2013; 2015). Cell profiles showing a polygonal soma with dense 

accumulations of Nissl substance in the cytoplasm, an eccentric nucleus and a prominent 

nucleolus were classified as retinal ganglion cells (Fig. 2). Smaller, rounder and more palely 

stained profiles, with no evident Nissl substance in the cytoplasm were classified as 

amacrine cells (Fig. 2). Darkly stained profiles displaying a small, round or slightly elongated 

cell body were recognized as glial cells (Fig. 2). These cytological criteria were consistent at 

all eccentricities and were unambiguously applicable in low, moderate and high density 

regions of the megachiropteran retinas (Fig. 2). Because retinal ganglion cells were reliably 

identified at all eccentricities, we opted to exclude other cell types from the counting 

procedures. 

To map the topographic distribution of retinal ganglion cells in the retinas of 

megachiropterans, cell counts at each sampling site were converted to an equivalent cell 

density per square millimeter. We used Arcview 3.2 software (http://www.esri.com, RRID: 

SciRes_000116) to construct topographic maps depicting the distribution of ganglion cells in 

the megachiropteran retinas using the spline interpolation method (Coimbra et al., 2006).  

Photomicrographs were obtained using a digital camera (Microfire, Optronics, CA) coupled 

to a Stereo Investigator system. Digital photomicrographs were processed using Adobe 

Photoshop CS2 (San Jose, CA) for scaling and minor adjustment of the levels of brightness 

and contrast.     

 

Anatomical estimation of spatial resolving power 

Spatial resolving power of the eye of megachiropterans was estimated using anatomical 

methods. The posterior nodal distance (PND) was indirectly estimated by multiplying the 

axial length by 0.52 according to the ratio between PND: axial length described for nocturnal 

species (Pettigrew et al., 1988). All megachiropterans examined show peak activity after 

sunset and return to their roosting sites before sunrise (Nowak, 1994).  
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To estimate the retinal magnification factor (RMF), which represents the distance in retinal 

surface that subtends one degree, we used the equation (Pettigrew et al., 1988):  

RMF=2πPND/360 

We adopted two approaches to estimate the highest spatial frequency of the 

megachiropteran eye. In the first, we considered that retinal ganglion cells in the peak region 

are organized in an approximate square lattice and estimated the linear density (cells/mm) 

by calculating the square root of the peak density (cells/mm2). According to the sampling 

theorem, as the sampling density is twice the threshold, we divided the linear density by 2. 

This value was then multiplied by RMF to obtain the highest spatial Nyquist frequency 

(Pettigrew et al., 1988). In the second approach, we assumed that the retinal ganglion cells 

in the peak region were organized in a triangular lattice (often described as a hexagonal 

lattice) because this arrangement allows for the minimum center-to-center spacing among 

cells (Williams and Coletta, 1987). We used the retinal ganglion cell peak density (D) to 

estimate the highest spatial frequency as determined by the Nyquist limits of spatial 

resolution according to the following equation (Snyder and Miller, 1977; Williams and 

Coletta, 1987): 

fN = 0.5 x RMF x (2D/√3)1/2 

Anatomical estimates of spatial resolving power using the total peak density of retinal 

ganglion cells should be considered as upper limits of retinal resolution because it is not 

known whether all retinal ganglion cells in the peak region are involved in fine discrimination 

tasks (Wässle, 2004; Reuter and Peichl, 2008).  

To relate behavioral significance to our estimates of spatial resolving power (SRP), we 

calculated the minimum resolvable distance that the megachiropteran species examined can 

spatially resolve objects (food items or predators) located at distances relevant to their 

ecological context. Assuming that the object sizes are about twice the threshold, we 

calculated the minimum separable angle (α) (Marshall, 2000): 
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 α=1/SPR  

Then, using the trigonometric relationships between the minimum separable angle (α) and a 

presumed distance relevant for foraging and predator detection (D), we estimated the 

minimum target size (MTS) that a megachiropteran can spatially detect objects following the 

equation below:  

D= MTS/tan α 

For these estimates, we assumed optimal contrast and luminance conditions. 

 

RESULTS 

The tapetum lucidum of megachiropterans 

Examination of the eye fundus of all megachiropteran species examined revealed the 

presence of a bright yellow tapetum lucidum covering almost the whole extension of the 

dorsal hemisphere as shown in two representative species, E. franqueti and H. monstrosus 

(Fig. 3). In all species, the choroid exhibits dark pigmentation in the ventral part of the retina 

and the far periphery of the dorsal hemisphere (Fig. 3).  

 

Stereological assessment of the total number and topographic distribution of retinal 

ganglion cells  

The retinal area in the megachiropteran species studied ranges from ~40-50 mm2 (M. 

woermani and S. zenkeri) to ~200 mm2 (H. monstrosus). The remaining species have retinal 

areas ranging between ~90 and 140 mm2 (Table 3). The estimated total number of retinal 

ganglion cells varied from ~90,000 (M. woermanni and S. zenkeri) to ~ 300,000 (H. 

monstrosus). The total numbers of retinal ganglion cells in C. argynnis (~130,000) and R. 

aegyptiacus (~160,000) fall closer to the lower estimates, whereas E. wahlbergi and E. 

franqueti show intermediate estimates (~200,000) within the range. Estimates of ~280,000 
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retinal ganglion cells in E. helvum fall closer to the maximum numbers estimated for H. 

monstrosus (Table 3). The mean Schaeffer CE for our estimates of total number of retinal 

ganglion cells is low, ranging between 0.028 and 0.036 (Table 3). The variance introduced 

by methodological procedures should not be higher than 50% of the observed group 

variance, giving a CE2/CV2 ratio of less than 0.5 (Slomianka and West, 2005). We estimated 

CE2/CV2 ratios below this value for E. wahlbergi (0.07), M. woermani (0.49) and C. argynnis 

(0.15) (Table 4). However, although the ratios of 1.55 for E. franqueti and 1.84 for R. 

aegyptiacus were greater than 0.5, they are not indicative of variability introduced by the 

stereological procedures (mean CE = 0.050), but instead they reflect lower interindividual 

variability compared to the other species (Table 3). We could not determine the CE2/CV2 

ratio for E. helvum and S. zenkeri because our samples for these species consisted of two 

and one specimen respectively.  

Topographic mapping of retinal ganglion cell densities revealed a combination of concentric 

and elongated patterns in the megachiropteran species examined (Fig. 4, 5). In all species, 

we found a temporal area defined by concentric isodensity lines between 3,500 and 5,500 

cells/mm2 (Fig. 4, 5). Within the limits of these isodensity lines, the maximum density of 

retinal ganglion cells ranges from ~5,000 in E. franqueti to ~7,000 cells/mm2 in E. helvum 

(Table 3). In megachiropteran species that occur predominantly in more open microhabitats 

(E. helvum, E. franqueti and E. wahlbergii) and the cave-dwelling R. aegyptiacus, we found 

that isodensity lines between 2,000 and 2,500 cells/mm2 taper across the retinal equator 

towards the nasal periphery delineating a weak horizontal streak (Fig. 4). Towards the far 

periphery, isodensity lines between 1,000 and 1,500 cells/mm2 are more concentrically 

organized (Fig. 4).  

In species that occur predominantly in more closed microhabitats (M. woermanni, S. 

argynnis, S. zenkeri and H. monstrosus), we found that isodensity lines surrounding the 

temporal area occur in the same range of 2,500 – 5,000 cells/mm2 for species described 

above (Fig. 5). These species show a more symmetric and concentric topographic 

organization of retinal ganglion cell density (Fig. 5). In M. woermanni, S. argynnis, and S. 
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zenkeri, isodensity lines of 2,500 – 3,000 cells/mm2 show a slight elongation towards the 

nasal part of the retina, indicating the presence of a loosely-organized horizontal streak (Fig. 

5). In contrast, in H. monstrosus, the isodensity line of 2,000 cells/mm2, which immediately 

surrounds the temporal area show a more vertical rather than horizontal elongation (Fig. 5). 

Towards the far periphery, isodensity lines (1,500 - 2,000 cells/mm2 in M. woermanni, S. 

argynnis, and S. zenkeri; 1,000 – 1,500 cells/mm2 in H. monstrosus) are more concentrically 

organized (fig. 5).  

 

Anatomical spatial resolving power 

We found that megachiropterans that occur predominantly in open environments (E. helvum, 

E. franqueti, E. wahlbergi) have larger eyes (~8.5-9.5 mm in axial length) compared to most 

species that occur predominantly in more enclosed environments (~6 mm in axial length; M. 

woermanni, C. argynnis, S. zenkeri). However, our estimates of axial length were larger for 

two species favouring more enclosed environments (~8 mm for R. aegyptiacus; ~12 mm for 

H. monstrosus) (Table 5). With this range of eye sizes, we estimated posterior nodal 

distances ranging between ~3 mm and 6 mm and retinal magnification factors between 

0.055 and 0.107 mm/degree for S. zenkeri and H. monstrosus respectively. Using maximum 

retinal ganglion cell density in the temporal area, we estimated the upper limits of spatial 

resolving power for square and triangular lattices ranging between ~2 and ~4 cycles/degree 

(Table 5 ).  

For species with the lowest (~2 cycles/degree) and highest (~4 cycles/degree) spatial 

resolving power we estimated a minimum separable angle between ~ 0.45° (M. woermanni, 

S. zenkeri and C. argynnis) and ~0.25° (E. helvum and H. monstrosus). For species with 

intermediate (~3 cycles/degree) spatial resolving power, we calculated a minimum separable 

angle of ~0.33° (R. aegyptiacus, E. wahlbergii and E. franqueti) (Table 6). At a presumed 

foraging distance of 1 m from the megachiropteran species, these angles translate into 

minimum target sizes ranging between ~8 mm (species with lowest resolution) and ~ 4 mm 
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(species with highest resolution). At the same distance, for species with intermediate 

resolution the estimated minimum target size is ~6-5 mm. At a distance presumably relevant 

for predator surveillance (~10 m), minimum target sizes range between ~ 4 cm (species with 

highest resolution) and ~8 cm (species with lowest resolution). For species with intermediate 

resolution the estimated minimum target size at distances of 10 m is ~6-5 cm (Table 6). 

These estimates indicate that, at these presumed distances, objects larger than the 

minimum target sizes can be spatially detected given optimal conditions of contrast and 

luminance. 

 

DISCUSSION 

The main results of our study show that the topographic distribution of retinal ganglion cells 

generally reflects variations in roosting microhabitat occupation and foraging for most African 

megachiropterans examined (Fig. 6). We found that species that roost in relatively open 

microhabitats show more elongated patterns of retinal ganglion cell distribution, whereas 

those species that occupy enclosed microhabitats have more concentric patterns; however, 

in contrast to previous reports, we found that the cave-dwelling R. aegyptiacus has a 

horizontal streak. All species studied have a temporal area of high ganglion cell density 

affording upper limits of spatial resolving power between ~2 and ~4 cycles/degree.   

 

Microhabitat occupation and the topographic distribution of retinal ganglion cells in 

African megachiropterans 

Because some megachiropteran species show preference to roost in more open, whereas 

others favour more enclosed microhabitats, we predicted that the topographic distribution of 

retinal ganglion cells would reflect these roosting preferences. In general, our findings 

support this prediction. In E. helvum, E. franqueti and E. wahlbergi, our finding of a 

horizontal streak of high ganglion cell density is consistent with their preferred roosting sites 
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in more open microhabitats. Although E. helvum roosts in a variety of microhabitats including 

lofts in caves and rocks, this species commonly aggregates in exfoliated branches of trees 

up to 20 m in height (Jones, 1972; DeFrees and Wilson, 1988). E. franqueti and E. wahlbergi 

both occur in savanna woodlands, grasslands and forest margins (Jones, 1972; Acharya, 

1992; Nowak, 1994). In these microhabitats the sparse or more open vegetation structure 

makes these species more vulnerable to predation, hence panoramic surveillance of the 

horizon is useful. In fact, E. helvum and E. franqueti remain vigilant even in bright light 

conditions with eyes usually open and ears in constant motion (Jones, 1972; DeFrees and 

Wilson, 1988). Therefore, the horizontal streak of high retinal ganglion cell density in 

megachiropterans may afford increased resolution across the horizon, potentially assisting 

with predator surveillance.  

Our finding of a generally concentric organization of the topographic distribution of retinal 

ganglion cell densities in predominantly forest-dwelling species (M. woermanni, C. argynnis, 

S. zenkeri and H. monstrosus) gives further support to our prediction that microhabitat 

occupation represents an important driving force shaping the topographic distribution of 

retinal ganglion cells. However, although all the forest-dwelling megachiropteran species 

studied here show a generally concentric organization of retinal ganglion cell densities, we 

found that all species ― with exception of H. monstrosus ― show an elongation across the 

nasotemporal equator, suggesting the presence of a weak horizontal streak. Although M. 

woermanni, C. argynnis and S. zenkeri occur in forest habitats roosting under dense foliage 

at different strata of the vegetation, they also may use, to some degree, more open 

environments while foraging (Weber et al., 2009). For example, Weber et al. (2009) have 

reported the obligatory nectarivorous M. woermanni drinking nectar from banana 

inflorescences outside forests. In addition, Fahr (2014) reported that although S. zenkeri 

inhabits predominantly primary forests it also occurs in more open environments such as 

forest fringes, forest gaps and cleared areas. Therefore, the presence of this weak horizontal 

streak may reflect the transitional use of more open environments by these forest-dwelling 

megachiropteran species.  
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In contrast, we found no indication of a horizontal elongation in the topographic distribution 

of retinal ganglion cell density in forest-dwelling H. monstrosus. This represents an 

interesting deviation from the topographic patterns we found for the other forest-dwelling 

species. Although, H. monstrosus roosts in forest environments between 20-30m above the 

forest floor, or in relatively more open vegetation habitats such as mangroves and palm 

forests (Langevin and Barclay, 1990), the more concentric topographic organization of 

ganglion cell densities in their retinas may reflect their roosting beneath dense foliage cover 

(Langevin and Barclay, 1990), which may have obviated the need for increased visual 

sampling across the horizon.  

Many species of megachiropterans exhibit sophisticated levels of dexterity in manipulating 

food items with their thumbs and feet (Jones, 1972; DeFrees and Wilson, 1988). Our finding 

that all species of megachiropterans examined in the present study have a concentric 

increase of density of retinal ganglion cells in the temporal part of the retina corroborates our 

prediction that they would have a temporal area. The use of thumbs and feet to assist with 

manipulation of food has been reported for E. helvum, which occasionally hang by their 

thumbs and manipulate food with their feet and mouth (Jones, 1972; DeFrees and Wilson, 

1988). In addition, Jones (1972) reported that E. franqueti can manipulate food items using 

one foot, mouth and wrists, for which the presence of a temporal area would facilitate visual 

sampling with increased resolution in the frontal visual field.  Moreover, E. franqueti also 

uses thumbs and feet during non-flight locomotion for short distances between branches and 

leaves (Jones, 1972). In this case, a temporal area would improve visual guidance during 

non-flight locomotion. For the obligate nectar-eating M. woermanni, the presence of a 

temporal area of high ganglion cell density, affording higher spatial resolution, potentially 

assists with visual control of their tongue during foraging.  

 

An exception to the rule: the cave-dwelling Egyptian rousette bat has a horizontal 

streak  
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Our finding of a horizontal streak in the retina of the Egyptian rousette bat R. aegyptiacus 

refutes our prediction that this cave-dwelling species would have only a concentric temporal 

area reflecting its occupation of a more enclosed microenvironment. In addition, our results 

contrast with the absence of a visual streak in the same species reported by Heffner et al. 

(1991).  These authors reported only the presence of a temporal area of high density of 

retinal ganglion cells and no streak is visible from their topographic map. However, the 

presence of a pronounced horizontal streak is a consistent feature in the retinas of the three 

specimens of Egyptian rousette bats analyzed in our study. We suggest these differences 

between our data and Heffner’s reflect differences in sampling protocols. In their analyses, 

Heffner et al (1999) used sampling grids of 200 x 200 µm in the region of high neuronal 

density and of 1000 x 1000 µm across the rest of the retina. In our study, we performed a 

high frequency sampling in the region of high density using the same grid size used by 

Heffner, but we used a sampling grid of 660 x 660 µm across the rest of retina, which is 

almost twofold finer than the sampling grid used by Heffner et al. (1999). It is likely that their 

larger sampling grid did not provide enough resolution to detect the presence of a horizontal 

streak in this species. Moreover, the smaller counting frame size of 35 x 53 µm used by 

Heffner et al. (1999) may have been another factor that hindered the identification of the 

streak in this species. For this species, we used a counting frame of 150 x 150 µm, 

approximately 12x larger in area than the counting frame used by Heffner et al. (1999), 

which increases the likelihood to detect variations in neuronal density where gradients are 

shallow, which is the case for R. aegyptiacus. These contrasting results give support to the 

notion that the definition of an optimized stereological sampling scheme is crucial to detect 

variations in the density of neurons in retinal wholemounts as highlighted by Wässle et al. 

(1975), Curcio et al. (1990) and Coimbra et al. (2012, 2014, 2015). Functionally, we suggest 

that the horizontal streak in R. aegyptiacus correlates with its needs to forage in the open 

after leaving their caves. R. aegyptiacus forages for in a wide variety of biomes from 

savannas to woodland forests (Kwiencinski and Griffiths, 1999) in which the presence of a 

horizontal streak allows for enhanced resolution across the horizon.  
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Megachiropteran retinal blueprint: Phylogenetic and ecological factors? 

In this study, we found that most megachiropteran species studied have a more or less well 

developed horizontal visual streak and a temporal area of high ganglion cell density in their 

retinas. The only exception is H. monstrosus which has a single temporal area and no 

horizontal streak. The presence of a horizontal streak in most species, and a temporal area 

in all species, of this cohort of megachiropterans indicates that these topographic retinal 

traits are common features shared by these species. Therefore, we suggest that the 

combination of a horizontal streak and a temporal area represent a presumed 

megachiropteran retinal blueprint, from which variations in topographic arrangement of 

retinal ganglion cell densities are derived to reflect more specific aspects of their behavioral 

ecology and niche occupation. This was particularly clear in the degree of development of 

the horizontal streak between species that occur in more open or enclosed environments.  

Retinal traits do not appear to provide substantive evidence regarding the phylogenetic 

relationships of megachiropterans as extensively debated in the literature (Pettigrew 1986; 

Pettigrew et al., 1989). Whereas the presence of a temporal area of high retinal ganglion cell 

density is a common trait shared by megachiropterans, many micro chiropterans (Coimbra et 

al., unpublished data) and indeed many other mammals share this type of retinal 

specializations. Moreover, megachiropterans and microchiropterans show marked 

differences in the dorsoventral gradients of retinal ganglion cell density. Megachiropterans 

have a mostly symmetric dorsoventral change in retinal ganglion cell density due to the 

presence of a horizontal visual streak. In contrast, microchiropterans have a clear 

dorsoventral asymmetry, with increased retinal ganglion cell density in the ventral part of the 

retina (Pettigrew et al., 1988; Coimbra et al., unpublished data). In addition, the presence of 

a horizontal streak across the nasotemporal axis, which is a common retinal feature of 

megachiropterans, has not been found in the retinas of strepsirhine primates and 

microchiropterans that occur in relatively more open environments (DeBruyn et al., 1980; 
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Pettigrew et al., 1988). Given the malleability of the topographic arrangement of retinal 

ganglion cell densities associated with different aspects of the behavioral ecology and 

microhabitat occupation of megachiropterans, microchiropterans, primates, and other 

mammals, retinal topography does not appear to provide useful clues regarding phylogenetic 

interrelationships.  

 

Factors influencing the spatial resolving power in African megachiropterans  

Eye size, diel activity patterns, microhabitat occupation and active predatory habits represent 

key factors that influence the levels of spatial resolving power in mammals (Veilleux and 

Kirk, 2014). Our findings that megachiropteran species that use predominantly more 

enclosed environments for roosting and foraging (M. woermanni, C. argynnis and S. zenkeri) 

have the lowest spatial resolving power (~2 cycles/degree) compared to species that roost in 

more open microenvironments (E. helvum; ~4 cycles/degree) supports the notion that 

luminance is crucial to define the number of receptors and hence specializations to improve 

resolution or sensitivity (Land and Nilsson, 2012). Consistent with our results, two species of 

Australian megachiropterans (little flying fox, Pteropus scapulatus and the grey-headed 

flying fox, P. poliochephalus), which predominantly roost in exposed branches of tall trees, 

also show higher levels of spatial resolving power (4 and 5.5. cycles/degree, respectively) 

(Pettigrew et al., 1988). In addition, our estimates of intermediate levels of spatial resolution 

(~3 cycles/degree) for megachiropteran species that occur in variety of both enclosed and 

open microhabitats for roosting and foraging (E. wahlbergi, R. aegyptiacus, Epomops 

franqueti) relates to variation in the luminance levels these animals will experience.  

Interestingly, we found an exception to this general trend. Our estimates of spatial resolving 

power for H. monstrosus (~4 cycles/degree), which also occurs in a variety of enclosed and 

open environments (Langevin and Barclay, 1990), is similar to the estimates of E. helvum. 

This is intriguing because, in contrast to E. helvum, which predominantly roosts in the 

exposed branches of tall trees in more open environments (DeFrees and Wilson, 1988), H. 
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monstrosus roosts beneath dense foliage cover and would be expected to have lower spatial 

resolution (Langevin and Barclay, 1990). Veilleux and Kirk (2014) have suggested that 

reliance on a more faunivorous diet may contribute to more elevated levels of spatial 

resolution in mammals. According to Langevin and Barcley (1990), H. monstrosus can 

consume meat scraps and attack birds, for which higher spatial resolving power is 

advantageous. However, it seems unlikely that this minor, carnivorous, aspect of this bat’s 

behavior has influenced the evolution of its eye, but it is possible that the larger head and 

eye size of H. monstrosus has permitted a limited degree of predation by virtue of slightly 

higher visual resolution compared to other African megachiropterans. In line with this view, 

megachiropteran species with smaller eye size (i.e. C. argynnis, S. zenkeri and M. 

woermanni) show the lowest levels of spatial resolution and rely predominantly on plant 

material and nectar, whereas species with larger eye size (i.e. E. wahlbergi) may take 

advantage of the occasional consumption of insects given their higher spatial resolving 

power (Acharya, 1992; Nowak, 1994; Weber et al., 2009; Fahr, 2014). 

Our estimates of spatial resolving power in African megachiropterans support the idea that 

eye size rather than peak ganglion cell density represents a crucial factor to define elevated 

levels of spatial resolution in megachiropterans (Pettigrew et al., 1988). Despite M. 

woermanni, C. argynnis and S. zenkeri having the highest estimated peak density of retinal 

ganglion cells (~6,000- 6,500 cells/mm2), their small eyes (~6 mm) bring spatial resolution to 

lower levels (~2 cycles/degree). In contrast, E. wahlbergi and R. aegyptiacus show peak 

densities of retinal ganglion cells in the same range of the species mentioned above, but 

their relatively larger eyes (~8- 8.5 mm) contribute to an increase in spatial resolving power 

(~3 cycles/degree). Consistent with this, we estimated a lower peak density of retinal 

ganglion cells (~5,000 cells/mm2) for E. franqueti and H. monstrosus but resolution in these 

species is ~3 and 4 cycles/degree, respectively, because of their larger eyes (~9.5 and 12 

mm), respectively. However, among the species we examined, one exception is E. helvum, 

which has an eye size (~9.4 mm) similar to E. franqueti, but its peak ganglion cell density of 

~7,000 cells/mm2 contributes to higher spatial resolving power (~3.8 cycles/degree). As 
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discussed above, it is likely that the higher peak density of retinal ganglion cell in E. helvum 

reflects increased luminance in the occupation of more open microhabitats compared to E. 

franqueti.  

 

Visual ecology in African megachiropterans: foraging and predator detection 

Most species of megachiropterans rely heavily on a variety of fruit, buds and young leaves 

for nutrition, but some species are more specialized to eat nectar (i.e. M. woermanni) 

whereas others can consume a more faunivorous diet including insects (i.e. E. wahlbergi) 

and small vertebrates (i.e. H. monstrosus) (Langevin and Barclay, 1990; Weber et al, 2009). 

In an ecological perspective, our estimates of spatial resolving power across the 

megachiropteran species examined potentially allow the detection of a range of food items 

or assist with visual control of praxic activities during foraging. For example, in the nectar-

eating species, M. woermanni (~2 cycles/degree), the minimum target size of ~0.8 mm 

detectable at distances of 10 cm is reasonable to allow for the discrimination of physical 

features of banana inflorescences (~1-2 cm diameter), thus assisting with visual control of 

their tongue during foraging (Fig. 7A). At distances of ~1 m, megachiropteran species with 

spatial resolving powers of 3 to 4 cycles/degree (i.e. Eidolon helvum) can spatially 

discriminate objects as small as 6 and 4 mm, which potentially allows for the detection of a 

range of fruit such as bananas (~4 cm diameter) and mangoes (~10 cm diameter) (Fig. 7A).  

While foraging or roosting, megachiropterans need to remain vigilant for predators. At 

presumed distances of 10 m, the megachiropterans with the lowest spatial resolving power 

(~2 cycles/degree) show a minimum target size of 8 cm, whereas species with intermediate 

(~3 cycles/degree) and high spatial resolving power (~4 cycles/degree) can potentially 

discriminate objects as small as 4 to 5 cm. Therefore, at ~10 m, the levels of spatial 

resolving power estimated for the African megachiropterans studied allow for the detection of 

potential predators including nocturnal raptors (i.e. spotted eagle owls, ~15 cm front), small 

carnivores (i.e. African palm civets and genets, ~15 cm front) and humans (i.e. some African 
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populations who consume megachiropterans as bushmeat, ~45 cm shoulder width) 

(DeFrees and Wilson, 1988; Kwiescinski and Griffths, 1999) (Fig. 7B). Given optimal 

conditions of contrast and luminance, these predictions illustrate the potential to discriminate 

visual features from objects in the environment, thus representing a useful proxy to 

understanding how African megachiropterans use spatial vision in their behavioral ecology.  
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FIGURE AND TABLE LEGENDS 

Figure 1. Diversity of open and enclosed roosting microhabitats occupied by African 

megachiropterans. Eidolon helvum roosting in exposed branches of a tree (A); Hypsignathus 

monstrosus roosting under dense foliage (B); Rousettus aegyptiacus roosting in a cave (C); 

Close up of the head of Epomophorus wahlbergi to show the large eyes (D). Photo credits to 

Malcolm Schuyl (E. helvum), Christophe Lepetit (H. monstrosus), Eyal Bartov (R. 

aegyptiacus) and Paul Manger (E. wahlbergi).   

Figure 2. Nissl-stained retinal wholemount of E. wahlbergi (A). Note the higher density of 

retinal neurons in the temporal area (B, C) compared to the nasal (D) and ventral (E) 

aspects of the horizontal streak. Cytological criteria used to distinguish retinal ganglion cells 

(gc) from amacrine (a) and glial (g) in high (C) and moderate to low (D, E) density regions 

within the avascular retinal ganglion cell layer of E. wahlbergii. The asterisks depict retinal 

papillae in the photoreceptor layer which are unique to megachiropterans. Retinal papillae as 

seen in Differential Interference Contrast (DIC) (F). Scale bars = 2.5 mm in A; 100 µm in B; 

20 µm in C-F.  

Figure 3. Eyecups showing the tapetum lucidum in Epomops franqueti (A) and 

Hypsignathus monstrosus (B). Note that in both species the golden-yellow tapetum lucidum 

occupies the dorsal fundus of the eyecup. Below the optic disc (od), the choroid is 

pigmented. T, temporal; V, ventral. Scale bars = 2.5 mm.  
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Figure 4. Topographic maps showing the distribution of ganglion cells in retinal 

wholemounts of the African straw-colored bat, E. helvum (A); Egyptian rousette bat, R. 

aegyptiacus (B); Franquet’s epauletted bat, E. franqueti (C) and Wahlberg’s epauletted bat, 

E. wahlebergi (D). Numbers on the isodensity lines should be multiplied by 103 to express 

densities in cells/mm2. The dot within the limits of the highest isodensity line in each map 

marks the location of the peak density of retinal ganglion cells. The black circle in the center 

of the retina indicates the position of the optic disc.  T, temporal; V, ventral. Scale bars= 1 

mm.  

Figure 5. Topographic maps showing the distribution of ganglion cells in retinal 

wholemounts of the African long-tongued bat, M. woermanni (A); Short-palated bat, C. 

argynnis (B); Zenker’s bat, S. zenkeri (C) and Hammer-headed bat, H. monstrosus (D). 

Numbers on the isodensity lines should be multiplied by 103 to express densities in 

cells/mm2. The dot within the limits of the highest isodensity line in each map marks the 

location of the peak density of retinal ganglion cells. The black circle in the center of the 

retina indicates the position of the optic disc.  T, temporal; V, ventral. Scale bars= 1 mm.  

Figure 6. Summary of the patterns of topographic distribution of retinal ganglion cells, spatial 

resolving power and their relationship with roosting microhabitat occupation among 

megachiropterans examined in the present study. Variances in topographic densities of 

ganglion cells are depicted by gray gradient variations. 

Figure 7. Schematic diagrams illustrating the minimum target size that representative 

megachiropterans with varying levels of spatial resolving power can detect at presumed 

distances relevant for foraging (A) and predator detection (B).  Megachiropterans and 

African palm civet profiles were redrawn from Kingdon (2004).  

 

Table 1. Roosting microhabitat preferences and trophic specializations of the eight 

megachiropteran species examined.  
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Table 2. Stereological parameters defined to estimate the total number and topographic 

distribution of ganglion cells in the retinas of megachiropterans the optical fractionator 

method. 

Table 3. Estimates of the total numbers (rounded to the nearest 1,000) and peak density of 

ganglion cells obtained from retinal wholemounts of the megachiropteran species studied 

using the optical fractionator method.  

Table 4. Mean Schaeffer Coefficient of Error (CE), Coefficient of Variation (CV) and ratio 

CE2/CV2 derived from estimates of the total number of ganglion cells in megachiropteran 

retinal wholemounts using the optical fractionators method. SD, standard deviation.  

Table 5. Optical and anatomical parameters used to estimate the upper limits of spatial 

resolving power in the temporal area of the megachiropterans studied. PND, posterior nodal 

distance; RMF, retinal magnification factor.  

Table 6. Minimum resolvable angle and minimum target size estimated  using the upper 

limits of spatial resolving power in the temporal area of the megachiropterans studied. 

Presumed distances from resolvable objects are based on the needs for foraging and 

predator detection. 
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GRAPHICAL ABSTRACT  

We measured the topographic distribution of retinal ganglion cells and the upper limits of 

spatial resolution in the eyes of eight species of African megachiropterans. Our results 

indicate that these two parameters reflect roosting microhabitat and feeding preferences 

across species.     
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Table 1. Roosting microhabitat preferences and trophic specializations of the eight species of megachiropterans examined. 

 

(1) DeFrees and Wilson, 1988; (2) Kwiecinski and Griffiths, 1999; (3) Nowak, 1994; (4) Acharya, 1992; (5) Weber et al., 2009; 

(6) Nowak, 1994; (7) Fahr, 2014; (8) Langevin and Barclay, 1990.  

Common name 
 

Scientific name Average species 
body mass (g) 

Roosting microhabitat Food item 

African straw-colored 
fruit bat   
 

Eidolon helvum; Kerr 
1792 

260.2 Tall trees, lofts in caves, 
rocks 

(1)
 

Fruit, buds, young 
leaves, flowers, 
nectar and pollen 

(1)
 

Egyptian rousette fruit 
bat  
 

Rousettus 
aegyptiacus;  
Geoffroy, 1810 

142.6 Caves 
(2)

 Fruit 
(2)

 
 
 

Franquet’s epauletted 
fruit bat 
 

Epomops franqueti; 
Tomes, 1860 

115.1 Forests, woodland, 
grasslands, mosaic 
vegetation 

(3)
 

Fruit 
(3)

 
 
 

Wahlberg’s epauletted 
fruit bat 
 

Epomophorus 
wahlbergi; Sundevall, 
1846 

75.5 Savannas, woodlands, 
forest margins 

(4)
 

Fruit, insects 
(4)

 
 
 

Woermann’s fruit bat Megaloglossus 
woermanni; 
Pagenstecher, 1885  

20.2 Forests, shrubs and 
trees 

(5)
 

Nectar 
(5)

 
 
 

Short-palated fruit bat Casinycteris argynnis;  
Thomas, 1910 

29.5 Under dense foliage in 
tropical forests 

(6)
 

Fruit 
(6)

 
 
 

Zenker’s fruit bat Scotonycteris zenkeri; 
Matschie, 1894 

22.4 Forest fringes, forest 
gaps and cleared areas 
(7)

 

Fruit 
(7)

 
 
 

Hammer-headed fruit 
bat 

Hypsignathus 
monstrosus; 
Allen, 1861 

324.6 Forests, swamps, 
mangroves and palm 
forests 

(8)
 

Fruit, meat scavenger 
(8)
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Table 2. Stereological parameters defined to estimate the total number and topographic distribution of ganglion cells in the 

retinas of megachiropterans using the optical fractionator method. 

 

Species/ 
Sampling region 

Counting 
frame 

(µm x µm) 

Grid 
(µm x µm) 

Area 
sampling 
fraction 

E. helvum    
Whole retina   150 x 150 800 x 800 0.0352 
Peak region 100 x 100 200 x 200 0. 025 
    

R. aegyptiacus    
Whole retina   150 x 150 660 x 660 0.0517 
Peak region 100 x 100 200 x 200 0. 025 
    

E. franqueti    
Whole retina   150 x 150 780 x 780 0.0370 
Peak region  100 x 100 200 x 200 0. 025 
    

E. wahlbergi    
Whole retina   150 x 150 700 x 700 0.0459 
Peak region  100 x 100 200 x 200 0. 025 
    

M. woermanni    
Whole retina   150 x 150 470 x 470 0.1019 
Peak region  100 x 100 200 x 200 0. 025 
    

C. argynnis    
Whole retina 150 x 150 520 x 520 0.0832 
Peak region 100 x 100 200 x 200 0. 025 
    

S. zenkeri    
Whole retina 150 x 150 450 x 450 0.1111 
Peak region 100 x 100 200 x 200 0. 025 
    

H. monstrosus    
Whole retina 150 x 150 1000 x 1000 0.0225 
Peak region 100 x 100 200 x 200 0. 025 
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Table 3. Estimates of the total numbers (rounded to the nearest 1,000) and peak density of ganglion cells obtained from retinal 

wholemounts of the megachiropteran species studied using the optical fractionator method. 

Species Retinal 
area 
(mm

2
) 

Number 
of sites 
counted  

Estimated total 
number of 

retinal ganglion 
cells  

CE Subsampling 
area 
(mm

2
) 

Number 
of sites 
counted 

Peak 
density 
(cells/ 
mm

2
) 

CE 

E. helvum         
Ehe001R 133.28 222 274,000 0.035 1.62 45 6,900 0.040 
Ehe002R 142.86 229 285,000 0.032 1.74 45 6,900 0.027 
Mean 138.07 226 279,000 0.034 1.68 45 6,900 0.034 
         

R. aegyptiacus         
Rae001R 87.89 221 157,000 0.032 1.07 28 6,300 0.023 
Rae002R 95.37 234 163,000 0.032 1.00 28 5,300 0.031 
Rae003R 90.68 227 163,000 0.032 1.14 32 6,900 0.041 
Mean 91.31 227 161,000 0.032 1.07 29 6,167 0.032 
SD 3.78 7 3,801 0  0.07 2 808 

         

E. franqueti         
Efr001R 119.57 212 204,000 0.030 1.55 45 4,900 0.039 
Efr002R 125.38 218 195,000 0.031 1.54 45 5,100 0.028 
Efr003R 127.19 220 203,000 0.030 1.44 45 5,000 0.034 
Mean 124.05 217 201,000 0.03 1.51 45 5,000 0.03 
SD 3.98 4 4,883 0.001 0.06 0 100 0.006 
          

E. wahlbergi         
Ewa001R 91.68 205 177,000 0.034 1.22 33 5,700 0.034 
Ewa002L 101.47 226 178,000 0.033 1.16 32 5,200 0.043 
Ewa003R 118.09 255 218,000 0.031 1.27 35 6,600 0.038 
Mean 103.75 229 191,000 0.03 1.22 33 5,833 0.04 
SD 13.35 25 23,116 0.002 0.06 2 709 0.005 
         

M. woermanni         
Mwo001L 41.22 212 90,000 0.036 0.53 15 6,200 0.020 
Mwo003L 42.05 218 99,000 0.034 0.52 15 6,300 0.035 
Mwo004L 39.11 203 94,000 0.037 0.58 15 6,500 0.023 
Mean 40.79 211 94,000 0.036 0.05 15 6,333 0.026 
SD 1.52 8 4,808 0.002 0.03 0 153 0.008 

         

C. argynnis         
Car002R 50.33 212 144,000 0.032 0.65 18 6,600 0.044 
Car005R 50.44 209 128,000 0.031 0.65 15 6,500 0.020 
Car006R 48.74 203 125,000 0.025 0.70 18 6,400 0.041 
Mean 49.84 208 132,000 0.029 0.67 17 6,500 0.035 
SD 0.95 5 9,897 0.004 0.03 2 100 0.013 

         

S. zenkeri         
Sze001L 39.64 214 90,000 0.028 0.82 23 5,700 0.047 
         

H. monstrosus         
Hmo001R 201.40 214 340,000 0.029 1.94 50 4,800 0.020 
Hmo002R 187.36 200 281,000 0.031 1.95 50 5,400 0.025 
Mean 194.38 207 310,000 0.03 1.95 50 5,100 0.02 
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Table 4. Mean Schaeffer Coefficient of Error (CE), Coefficient of Variation (CV), and ratio CE
2
/CV

2 
derived from estimates of 

the total number of ganglion cells in megachiropteran retinal wholemounts using the optical fractionator method. SD, standard 

deviation.  

 

Species/ 
Specimen 
 

Number of 
retinal ganglion 

cells  
 

CE 

R. aegyptiacus   
Mean 161,223 0.032 
SD 3,801 0.000 
CV

2
=SD

2
 /Mean

2 
0.00056  

CE
2 

0.00102  
CE

2
/CV

2 
1.84  

   

E. franqueti   
Mean 200,528 0.030 
SD 4,883 0.001 
CV

2
=SD

2
 /Mean

2 
0.00059  

CE
2 

0.00092  
CE

2
/CV

2 
1.55  

   

E. wahlbergi   
Mean 190,867 0.030 
SD 23,116 0.002 
CV

2
=SD

2
 /Mean

2 
0.01467  

CE
2 

0.00107  
CE

2
/CV

2 
0.07  

   

M. woermanni   
Mean 94,325 0.036 
SD 4,808 0.002 
CV

2
=SD

2
 /Mean

2 
0.00260  

CE
2 

0.00127  
CE

2
/CV

2 
0.49  

   

C. argynnis   
Mean 132,303 0.029 
SD 9,897 0.004 
CV

2
=SD

2
 /Mean

2 
0.00560  

CE
2 

0.00086  
CE

2
/CV

2 
0.15  
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Table 5. Optical and anatomical parameters used to estimate the upper limits of spatial resolving power in the central area of 

the megachiropterans studied. PND, posterior nodal distance; RMF, retinal magnification factor. 

Species/ 
Specimen 

Axial 
length 
(mm) 

Peak density of 
ganglion cells 
(cells/mm

2
) 

PND 
 (mm) 

RMF 
(mm/deg) 

Spatial resolving 
power - 

Square array 
(cycles/deg) 

Spatial resolving 
power - 

Hexagonal array 
(cycles/deg) 

E. helvum       
Ehe001R 9.7 6,900 5.04 0.088 3.7 3.9 
Ehe002R 9.1 6,900 4.75 0.083 3.4 3.7 
Mean 9.4 6,900 4.90 0.085 3.5 3.8 
       

R. aegyptiacus       
Rae001R 8.1 6,300 4.22 0.074 2.9 3.1 
Rae002R 7.8 5,300 4.05 0.071 2.6 2.8 
Rae003R 7.8 6,900 4.06 0.071 2.9 3.2 
Mean 7.9 6,167 4.11 0.072 2.8 3.0 
SD 0.2 808 0.10 0.002 0.2 0.2 
       

E. franqueti       
Efr001R 9.5 4,900 4.95 0.086 3.0 3.2 
Efr002R 9.4 5,100 4.87 0.085 3.0 3.3 
Efr003R 9.5 5,000 4.96 0.086 3.1 3.3 
Mean 9.5 5,000 4.93 0.086 3.0 3.3 
SD 0.1 100 0.05 0.001 0.0 0.0 
       

E. wahlbergi       
Ewa001R 8.3 5,700 4.30 0.075 2.8 3.0 
Ewa002L 8.1 5,200 4.23 0.074 2.7 2.9 
Ewa003R 9.3 6,600 4.81 0.084 3.4 3.7 
Mean 8.5 5,833 4.44 0.078 3.0 3.2 
SD 0.6 709 0.32 0.006 0.4 0.4 
       

M. woermanni       
Mwo001L 5.7 6,200 2.94 0.051 2.0 2.2 
Mwo003L 5.8 6,300 3.04 0.053 2.1 2.3 
Mwo004L 5.5 6,500 2.87 0.050 2.0 2.2 
Mean 5.7 6,333 2.95 0.051 2.0 2.2 
SD 0.2 153 0.08 0.001 0.0 0.1 
       

C. argynnis       
Car002R 6.4 6,600 3.31 0.058 2.3 2.5 
Car005R 6.4 6,500 3.31 0.058 2.3 2.5 
Car006R 6.2 6,400 3.24 0.057 2.3 2.4 
Mean 6.3 6,500 3.28 0.057 2.3 2.5 
SD 0.1 100 0.04 0.001 0.0 0.0 
       

S. zenkeri       
Sze001L 6.0 5,700 3.14 0.055 2.1 2.2 
       

H. monstrosus       
Hmo001R 11.9 4,800 6.16 0.107 3.7 4.0 
Hmo002R 11.8 5,400 6.15 0.107 3.9 4.2 
Mean 11.8 5,100 6.15 0.107 3.8 4.1 
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Table 6. Minimum resolvable angle and minimum target size estimated using the upper limits of spatial resolving power in the 

temporal area of the megachiropterans studied. Presumed distances from resolvable objects are based on the needs for 

foraging and predator detection.  

 

Species Spatial resolving 
power 

(cycles/deg) 

Minimum resolvable 
angle (deg) 

Distance from object (m)/ 
Minimum target size (mm)  

   0.1 m 1 m 10 m 

Megaloglossus woermanni 2.2 0.455 0.8 8 80 
Scotonyceteris zenkeri 2.2 0.455 0.8 8 80 
Casynicteris argynnis 2.5 0.400 0.7 7 70 

Rousettus aegyptiacus 3.0 0.333 0.6 6 60 
Epomophorus wahlbergi 3.2 0.313 0.5 5 50 
Epomops franqueti 3.3 0.303 0.5 5 50 
Eidolon helvum 3.8 0.263 0.5 5 50 
Hypsignathus monstrosus 4.1 0.244 0.4 4 40 
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Fig. 1: Diversity of open and enclosed roosting microhabitats occupied by African megachiropterans. Eidolon 
helvum roosting in exposed branches of a tree (A); Hypsignathus monstrosus roosting under dense foliage 
(B); Rousettus aegyptiacus roosting in a cave (C); Close up of the head of Epomophorus wahlbergi to show 

the large eyes (D). Photo credits to Malcolm Schuyl (E. helvum), Christophe Lepetit (H. monstrosus), Eyal 
Bartov (R. aegyptiacus) and Paul Manger (E. wahlbergi).  

168x168mm (300 x 300 DPI)  
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Nissl-stained retinal wholemount of E. wahlbergi (A). Note the higher density of retinal neurons in the 
temporal area (B, C) compared to the nasal (D) and ventral (E) aspects of the horizontal streak. Cytological 

criteria used to distinguish retinal ganglion cells (gc) from amacrine (a) and glial (g) in high (C) and 
moderate to low (D, E) density regions within the avascular retinal ganglion cell layer of E. wahlbergii. The 
asterisks depict retinal papillae in the photoreceptor layer which are unique to megachiropterans. Retinal 

papillae as seen in Differential Interference Contrast (DIC) (F). Scale bars = 2.5 mm in A; 100 µm in B; 20 
µm C-F.  

170x113mm (300 x 300 DPI)  
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Eyecups showing the tapetum lucidum in Epomops franqueti (A) and Hypsignathus monstrosus (B). Note 
that in both species the golden-yellow tapetum lucidum occupies the dorsal fundus of the eyecup. Below the 

optic disc (od), the choroid is pigmented. T, temporal; V, ventral. Scale bars = 2.5 mm.  

166x83mm (300 x 300 DPI)  
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Fig. 4: Topographic maps showing the distribution of ganglion cells in retinal wholemounts of the African-
straw colored bat, E. helvum (A); Egyptian rousette bat, R. aegyptiacus (B); Franquet’s epauletted bat, E. 
franqueti (C) and Wahlberg’s epauletted bat, E. wahlebergi (D). Numbers on the isodensity lines should be 

multiplied by 103 to express densities in cells/mm2. The dot within the limits of the highest isodensity line in 
each map marks the location of the peak density of retinal ganglion cells. The black circle in the center of 

the retina indicates the position of the optic disc.  T, temporal; V, ventral. Scale bars= 1 mm.  
170x186mm (300 x 300 DPI)  
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Fig. 5: Topographic maps showing the distribution of ganglion cells in retinal wholemounts of the African 
long-tongued bat, M. woermanni (A); Short-palated bat, C. argynnis (B); Zenker’s bat, S. zenkeri (C) and 
Hammer-headed bat, H. monstrosus (D). Numbers on the isodensity lines should be multiplied by 103 to 
express densities in cells/mm2. The dot within the limits of the highest isodensity line in each map marks 

the location of the peak density of retinal ganglion cells. The black circle in the center of the retina indicates 
the position of the optic disc.  T, temporal; V, ventral. Scale bars= 1 mm.  

170x187mm (300 x 300 DPI)  
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Fig. 6: Summary of the patterns of topographic distribution of retinal ganglion cells, spatial resolving power 
and their relationship with roosting microhabitat occupation among megachiropterans examined in the 

present study. Variances in topographic densities of ganglion cells are depicted by gray gradient variations.  

170x101mm (300 x 300 DPI)  

 

 

Page 43 of 44

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

Schematic diagrams illustrating the minimum target size that representative megachiropterans with varying 
levels of spatial resolving power can detect at presumed distances relevant for foraging (A) and predator 
detection (B).  Megachiropterans and African palm civet profiles were redrawn from Kingdon (2004).  

169x93mm (300 x 300 DPI)  
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