13 research outputs found

    Modelling the Evolution in Microchemistry and its Effects on the Softening Behavior of Cold Rolled AlFeMnSi-Alloys during Annealing

    Get PDF
    A dedicated diffusion controlled precipitation model for AlMnFeSi-alloys, based on classical nucleation and growth theory, has been implemented and coupled to a phenomenological softening model accounting for the combined effect of recovery and recrystallization during annealing after cold rolling. The result is a fully coupled precipitation and softening model which in principle is capable of predicting for variations in solute levels and size and volume fraction of dispersoids and their interaction with the softening behavior during annealing

    Integrated Precipitate Simulation for Friction Stir Welding of Age Hardening Aluminium Alloys

    No full text
    Le friction stir welding (FSW) est un procĂ©dĂ© de soudage inventĂ© en 1991 par l’institut de soudure anglais, le TWI. Celui-ci suscite un vif intĂ©rĂȘt de la part de l’industrie aĂ©ronautique par sa capacitĂ© de souder les alliages d’aluminium de la sĂ©rie 2XXX et 7XXX, Ă  durcissement structural, rĂ©putĂ©s pratiquement insoudables. Ce procĂ©dĂ© Ă©tant relativement rĂ©cent, il fait encore sujet de recherches actives. Ce travail a pour objectif de prĂ©voir le profil de duretĂ© d’un joint soudĂ© par FSW d’un alliage d’aluminium, le 2024 T3. Cet alliage Ă©tant Ă  durcissement structural, il est nĂ©cessaire de prĂ©voir l’influence de la tempĂ©rature sur l’évolution de la prĂ©cipitation au cours du procĂ©dĂ© pour en dĂ©duire sa limite d’élasticitĂ©. L’estimation du champ de tempĂ©rature durant le rĂ©gime stationnaire du procĂ©dĂ© s’appuie sur des travaux internes au centre SMS. La prĂ©vision de la prĂ©cipitation au cours du soudage est effectuĂ©e Ă  l’aide de deux modĂšles. Le premier modĂšle, Ă  base d’équivalence temps–tempĂ©ratures, est une proposition d’extension aux alliages d’aluminium sous-revenu du modĂšle de Myhr & Grong (1991) Ă©tabli dans le cas des alliages d’aluminium sur-revenu. Le deuxiĂšme modĂšle s’appuie sur une discrĂ©tisation de la distribution des rayons des prĂ©cipitĂ©s, suivant le schĂ©ma numĂ©rique de Kampmann et Wagner (1983), pour calculer ensuite son Ă©volution. Bien que le premier modĂšle permette de prĂ©voir l’évolution de la duretĂ© au cours de recuits isothermes, les profils de duretĂ© simulĂ©s ne sont pas en accord avec les profils expĂ©rimentaux. Seul le deuxiĂšme modĂšle permet une prĂ©vision raisonnable de la microstructure, en accord avec les mesures rĂ©alisĂ©es dans la thĂšse de Genevois (2004), et des profils de duretĂ© proches des rĂ©sultats expĂ©rimentaux. Finalement, une expression analytique en fonction des paramĂštres microstructuraux du flux de chaleur lors d’un essai de calorimĂ©trie diffĂ©rentielle (DSC) a Ă©tĂ© Ă©tablie. Celle-ci donne la possibilitĂ© de simuler un essai de DSC, et de vĂ©rifier ainsi la cohĂ©rence entre les grandeurs thermodynamiques et cinĂ©tiques introduites dans le deuxiĂšme modĂšle de prĂ©cipitation.Friction stir welding (FSW) is a recent welding process invented by The Welding Institute (TWI). It is particularly interesting for the aeronautical sector due to its capacity to weld 2XXX and 7XXX age-hardening aluminium alloys, which were previously considered unweldable. This relatively new process is currently the subject of active research. This work aims to simulate the hardness profile of an AA2024-T3 friction stir weld. AA2024-T3 is an age hardening aluminium alloy, so it is necessary to predict the effect of temperature on the evolution of precipitation during the process to deduce its yield strength. An estimation of the temperature field during the stationary regime relies on internal work of the SMS centre. Precipitate evolution during welding is simulated using two models. The first one, based on the isokinetic strength, is an extension to under-aged aluminium alloys of the Myhr & Grong model (1991) established for the overaged aluminium alloy. The second one, based on the Kampmann and Wagner (1983) numerical framework discretizes the distribution of the precipitate radius to deduce its evolution. Though the first model can predict the hardness evolution during isothermal treatments, the simulated profiles do not match the experimental ones. Only the second one can predict reasonably well the microstructures in agreement with the observations described in the thesis of Genevois (2004) and also with hardness profiles close to the experimental ones. An analytical expression for the heat flux during a differential scanning calorimetry experiment has been established as a function of microstructural parameters. This gives one the possibility to simulate a DSC experiment and to validate the coherency between thermodynamical and kinetic quantities, as introduced in the second precipitation model

    Modélisation intégrée de la précipitation pour le soudage par friction malaxage d'alliages d'aluminium à durcissement structural

    Get PDF
    Friction stir welding (FSW) is a recent welding process invented by The Welding Institute (TWI). It is particularly interesting for the aeronautical sector due to its capacity to weld 2XXX and 7XXX age-hardening aluminium alloys, which were previously considered unweldable. This relatively new process is currently the subject of active research. This work aims to simulate the hardness profile of an AA2024-T3 friction stir weld. AA2024-T3 is an age hardening aluminium alloy, so it is necessary to predict the effect of temperature on the evolution of precipitation during the process to deduce its yield strength. An estimation of the temperature field during the stationary regime relies on internal work of the SMS centre. Precipitate evolution during welding is simulated using two models. The first one, based on the isokinetic strength, is an extension to under-aged aluminium alloys of the Myhr & Grong model (1991) established for the overaged aluminium alloy. The second one, based on the Kampmann and Wagner (1983) numerical framework discretizes the distribution of the precipitate radius to deduce its evolution. Though the first model can predict the hardness evolution during isothermal treatments, the simulated profiles do not match the experimental ones. Only the second one can predict reasonably well the microstructures in agreement with the observations described in the thesis of Genevois (2004) and also with hardness profiles close to the experimental ones. An analytical expression for the heat flux during a differential scanning calorimetry experiment has been established as a function of microstructural parameters. This gives one the possibility to simulate a DSC experiment and to validate the coherency between thermodynamical and kinetic quantities, as introduced in the second precipitation model.Le friction stir welding (FSW) est un procĂ©dĂ© de soudage inventĂ© en 1991 par l’institut de soudure anglais, le TWI. Celui-ci suscite un vif intĂ©rĂȘt de la part de l’industrie aĂ©ronautique par sa capacitĂ© de souder les alliages d’aluminium de la sĂ©rie 2XXX et 7XXX, Ă  durcissement structural, rĂ©putĂ©s pratiquement insoudables. Ce procĂ©dĂ© Ă©tant relativement rĂ©cent, il fait encore sujet de recherches actives. Ce travail a pour objectif de prĂ©voir le profil de duretĂ© d’un joint soudĂ© par FSW d’un alliage d’aluminium, le 2024 T3. Cet alliage Ă©tant Ă  durcissement structural, il est nĂ©cessaire de prĂ©voir l’influence de la tempĂ©rature sur l’évolution de la prĂ©cipitation au cours du procĂ©dĂ© pour en dĂ©duire sa limite d’élasticitĂ©. L’estimation du champ de tempĂ©rature durant le rĂ©gime stationnaire du procĂ©dĂ© s’appuie sur des travaux internes au centre SMS. La prĂ©vision de la prĂ©cipitation au cours du soudage est effectuĂ©e Ă  l’aide de deux modĂšles. Le premier modĂšle, Ă  base d’équivalence temps–tempĂ©ratures, est une proposition d’extension aux alliages d’aluminium sous-revenu du modĂšle de Myhr & Grong (1991) Ă©tabli dans le cas des alliages d’aluminium sur-revenu. Le deuxiĂšme modĂšle s’appuie sur une discrĂ©tisation de la distribution des rayons des prĂ©cipitĂ©s, suivant le schĂ©ma numĂ©rique de Kampmann et Wagner (1983), pour calculer ensuite son Ă©volution. Bien que le premier modĂšle permette de prĂ©voir l’évolution de la duretĂ© au cours de recuits isothermes, les profils de duretĂ© simulĂ©s ne sont pas en accord avec les profils expĂ©rimentaux. Seul le deuxiĂšme modĂšle permet une prĂ©vision raisonnable de la microstructure, en accord avec les mesures rĂ©alisĂ©es dans la thĂšse de Genevois (2004), et des profils de duretĂ© proches des rĂ©sultats expĂ©rimentaux. Finalement, une expression analytique en fonction des paramĂštres microstructuraux du flux de chaleur lors d’un essai de calorimĂ©trie diffĂ©rentielle (DSC) a Ă©tĂ© Ă©tablie. Celle-ci donne la possibilitĂ© de simuler un essai de DSC, et de vĂ©rifier ainsi la cohĂ©rence entre les grandeurs thermodynamiques et cinĂ©tiques introduites dans le deuxiĂšme modĂšle de prĂ©cipitation

    A transmission electron microscopy study of precipitate phases that form during operation in a heat exchanger alloy

    Get PDF
    During manufacturing of heat exchangers, the core material is cladded with a lower-melting point alloy, rolled into thin strips before being formed and finally brazed at an elevated temperature. After a period of natural aging, the final product is operated at two different temperatures depending on the application: about 95 °C for radiators, and peaks up to about 250 °C for charge-air-coolers. For an Al-Mg-Si-Cu alloy type core material, this process translates into solution heat treatment, natural aging and aging during operation. High-resolution imaging with aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the presence of a complex mix of precipitates after 58 days at 95 °C, including a never-before-reported phase which structurally is a mix between Al-Cu and Al-Mg-Si type precipitates. The stability of this phase is investigated with density functional theory (DFT). Q' is the main phase observed after 5 h at 250 °C, with most precipitates incorporating a certain type of stacking fault.publishedVersio

    Modélisation intégrée de la précipitation pour le soudage par friction malaxage d'alliages d'aluminium à durcissement structural

    No full text
    Le friction stir welding (FSW) est un procĂ©dĂ© de soudage inventĂ© en 1991 par l institut de soudure anglais, le TWI. Celui-ci suscite un vif intĂ©rĂȘt de la part de l industrie aĂ©ronautique par sa capacitĂ© de souder les alliages d aluminium de la sĂ©rie 2XXX et 7XXX, Ă  durcissement structural, rĂ©putĂ©s pratiquement insoudables. Ce procĂ©dĂ© Ă©tant relativement rĂ©cent, il fait encore sujet de recherches actives. Ce travail a pour objectif de prĂ©voir le profil de duretĂ© d un joint soudĂ© par FSW d un alliage d aluminium, le 2024 T3. Cet alliage Ă©tant Ă  durcissement structural, il est nĂ©cessaire de prĂ©voir l influence de la tempĂ©rature sur l Ă©volution de la prĂ©cipitation au cours du procĂ©dĂ© pour en dĂ©duire sa limite d Ă©lasticitĂ©. L estimation du champ de tempĂ©rature durant le rĂ©gime stationnaire du procĂ©dĂ© s appuie sur des travaux internes au centre SMS. La prĂ©vision de la prĂ©cipitation au cours du soudage est effectuĂ©e Ă  l aide de deux modĂšles. Le premier modĂšle, Ă  base d Ă©quivalence temps tempĂ©ratures, est une proposition d extension aux alliages d aluminium sous-revenu du modĂšle de Myhr & Grong (1991) Ă©tabli dans le cas des alliages d aluminium sur-revenu. Le deuxiĂšme modĂšle s appuie sur une discrĂ©tisation de la distribution des rayons des prĂ©cipitĂ©s, suivant le schĂ©ma numĂ©rique de Kampmann et Wagner (1983), pour calculer ensuite son Ă©volution. Bien que le premier modĂšle permette de prĂ©voir l Ă©volution de la duretĂ© au cours de recuits isothermes, les profils de duretĂ© simulĂ©s ne sont pas en accord avec les profils expĂ©rimentaux. Seul le deuxiĂšme modĂšle permet une prĂ©vision raisonnable de la microstructure, en accord avec les mesures rĂ©alisĂ©es dans la thĂšse de Genevois (2004), et des profils de duretĂ© proches des rĂ©sultats expĂ©rimentaux. Finalement, une expression analytique en fonction des paramĂštres microstructuraux du flux de chaleur lors d un essai de calorimĂ©trie diffĂ©rentielle (DSC) a Ă©tĂ© Ă©tablie. Celle-ci donne la possibilitĂ© de simuler un essai de DSC, et de vĂ©rifier ainsi la cohĂ©rence entre les grandeurs thermodynamiques et cinĂ©tiques introduites dans le deuxiĂšme modĂšle de prĂ©cipitation.Friction stir welding (FSW) is a recent welding process invented by The Welding Institute (TWI). It is particularly interesting for the aeronautical sector due to its capacity to weld 2XXX and 7XXX age-hardening aluminium alloys, which were previously considered unweldable. This relatively new process is currently the subject of active research. This work aims to simulate the hardness profile of an AA2024-T3 friction stir weld. AA2024-T3 is an age hardening aluminium alloy, so it is necessary to predict the effect of temperature on the evolution of precipitation during the process to deduce its yield strength. An estimation of the temperature field during the stationary regime relies on internal work of the SMS centre. Precipitate evolution during welding is simulated using two models. The first one, based on the isokinetic strength, is an extension to under-aged aluminium alloys of the Myhr & Grong model (1991) established for the overaged aluminium alloy. The second one, based on the Kampmann and Wagner (1983) numerical framework discretizes the distribution of the precipitate radius to deduce its evolution. Though the first model can predict the hardness evolution during isothermal treatments, the simulated profiles do not match the experimental ones. Only the second one can predict reasonably well the microstructures in agreement with the observations described in the thesis of Genevois (2004) and also with hardness profiles close to the experimental ones. An analytical expression for the heat flux during a differential scanning calorimetry experiment has been established as a function of microstructural parameters. This gives one the possibility to simulate a DSC experiment and to validate the coherency between thermodynamical and kinetic quantities, as introduced in the second precipitation model.ST ETIENNE-ENS des Mines (422182304) / SudocSudocFranceF

    Modelling differential scanning calorimetry curves of precipitation in Al-Cu-Mg

    No full text
    International audienceThe heat flux during a differential scanning calorimetry (DSC) experiment of a precipitation reaction is expressed analytically as a function of the interfacial energy, the solid solution composition and the precipitate fraction. Using a physically based model of nucleation, growth and dissolution, the respective contributions of these terms are compared for the case of S phase precipitation in AA2024 (Al-4% Cu-2% Mg). Good overall agreement is obtained for the experimental and simulated DSC curves if the interfacial energy is tuned correctly

    A Solute Pinning Approach to Solute Drag in Multi-Component Solid Solution Alloys

    No full text
    Open Access tidsskrift. http://www.scirp.org/journal/mnsms/The Cahn, LĂŒcke and StĂŒwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the boundary has therefore recently been suggested, which has the main advantage of a simpler mathematical treatment. In the present paper this approach has been generalized to take into account the influence of different types of so- lute atoms in the high solute content/low driving force regime.Forlagets publiserte versjon. Open access. Copyright © 2014 Emmanuel Hersent et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intel- lectual property Emmanuel Hersent et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian

    On the Effect of Atoms in Solid Solution on Grain Growth Kinetics

    No full text
    The discrepancy between the classical grain growth law in high purity metals (grain size D∝t1/2D∝t1/2) and experimental measurements has long been a subject of debate. It is generally believed that a time growth exponent less than 1/2 is due to small amounts of impurity atoms in solid solution even in high purity metals. The present authors have recently developed a new approach to solute drag based on solute pinning of grain boundaries, which turns out to be mathematically simpler than the classic theory for solute drag. This new approach has been combined with a simple parametric law for the growth of the mean grain size to simulate the growth kinetics in dilute solid solution metals. Experimental grain growth curves in the cases of aluminum, iron, and lead containing small amounts of impurities have been well accounted for

    A Solute Pinning Approach to Solute Drag in Multi-Component Solid Solution Alloys

    No full text
    The Cahn, LĂŒcke and StĂŒwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the boundary has therefore recently been suggested, which has the main advantage of a simpler mathematical treatment. In the present paper this approach has been generalized to take into account the influence of different types of so- lute atoms in the high solute content/low driving force regime
    corecore