5 research outputs found

    When rats rescue robots

    Get PDF
    Robots are increasingly being used to monitor and even participate in social interactions with animals in their own environments. Robotic animals enable social behaviors to be observed in natural environments, or specifically elicited under the control of an experimenter. It is an open question to what extent animals will form positive social connections with such robots. To test this, we familiarized rats to two rat-sized robots, one exhibiting “social” behaviors, including helping, while the other was also mobile but not helpful. When given an opportunity to release the robots from restrainers, as they do for conspecifics, we found that rats did release the robots, and moreover, were significantly more likely to release the helpful than the unhelpful robot. These findings indicate that robots can elicit helpful behavior from rats, and that rats will even discriminate between robots on the basis of their behaviors

    Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation

    Get PDF
    To reach the lysosomes, down-regulated receptors such as the epidermal growth factor receptor must first be sorted into internal vesicles of late endosomes (multivesicular bodies), a ubiquitin-dependent event that requires the coordinated function of the endosome sorting complex required for transport (ESCRT) proteins. Here we report that CHMP3, an ESCRT-III complex component, and associated molecule of SH3 domain of STAM (AMSH), a deubiquitinating enzyme, interact with each other in cells. A dominant-negative version of CHMP3, which specifically prevents targeting of AMSH to endosomes, inhibits degradation but not internalization of EGFR, suggesting that endosomal AMSH is a functional component of the multivesicular body pathway

    Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains

    Get PDF
    RationaleIdentification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression.ObjectiveOur goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome.MethodsWe measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine.ResultsGlyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression.ConclusionWe provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-011-2574-z) contains supplementary material, which is available to authorized users
    corecore