494 research outputs found

    Extraction of Plumes in Turbulent Thermal Convection

    Full text link
    We present a scheme to extract information about plumes, a prominent coherent structure in turbulent thermal convection, from simultaneous local velocity and temperature measurements. Using this scheme, we study the temperature dependence of the plume velocity and understand the results using the equations of motion. We further obtain the average local heat flux in the vertical direction at the cell center. Our result shows that heat is not mainly transported through the central region but instead through the regions near the sidewalls of the convection cell.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity

    Get PDF
    Aggregation of islet amyloid polypeptide (IAPP), a peptide hormone co-synthesized and co-stored with insulin in pancreatic cells and also co-secreted to the circulation, is associated with beta-cell death in type-2 diabetes (T2D). In T2D patients IAPP is found aggregating in the extracellular space of the islets of Langerhans. Although the physiological environments of these intra- and extra-cellular compartments and vascular systems significantly differ, the presence of proteins is ubiquitous but the effects of protein binding on IAPP aggregation are largely unknown. Here we examined the binding of freshly-dissolved IAPP as well as pre-formed fibrils with two homologous proteins, namely cationic lysozyme (Lys) and anionic alpha-lactalbumin (aLac), both of which can be found in the circulation. Biophysical characterizations and a cell viability assay revealed distinct effects of Lys and aLac on IAPP amyloid aggregation, fibril remodelling and cytotoxicity, pointing to the role of protein “corona” in conferring the biological impact of amyloidogenic peptides. Systematic molecular dynamics simulations further provided molecular and structural details for the observed differential effects of proteins on IAPP amyloidosis. This study facilitates our understanding of the fate and transformation of IAPP in vivo, which are expected to have consequential bearings on IAPP glycemic control and T2D pathology

    Bispecific antibody approach for EGFR-directed blockade of the CD47-SIRP alpha "don't eat me" immune checkpoint promotes neutrophil-mediated trogoptosis and enhances antigen cross-presentation

    Get PDF
    Cancer cells overexpress CD47 to subvert phagocytic elimination and evade immunogenic processing of cancer antigens. Moreover, CD47 overexpression inhibits the antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC) activities of therapeutic anticancer antibodies. Consequently, CD47-blocking antibodies have been developed to overcome the immunoevasive activities of cancer cell-expressed CD47. However, the wide-spread expression of CD47 on normal cells forms a massive "antigen sink" that potentially limits sufficient tumor accretion of these antibodies. Additionally, a generalized blockade of CD47-SIRP alpha interaction may ultimately lead to unintended cross-presentation of self-antigens potentially promoting autoimmunity. To address these issues, we constructed a bispecific antibody, designated bsAb CD47xEGFR-IgG1, that blocks cancer cell surface-expressed CD47 in an EGFR-directed manner. BsAb CD47xEGFR-IgG1 selectively induced phagocytic removal of EGFR(pos)/CD47(pos)cancer cells and endowed neutrophils with capacity to kill these cancer cells by trogoptosis; an alternate form of ADCC that disrupts the target cell membrane. Importantly, bsAb CD47xEGFR-IgG1 selectively enhanced phagocytosis and immunogenic processing of EGFR(pos)/CD47(pos)cancers cells ectopically expressing viral protein CMVpp65. In conclusion, bsAb CD47xEGFR-IgG1 may be useful to reduce on-target/off-tumor effects of CD47-blocking approaches, enhance cancer cell elimination by trogoptosis, and promote adaptive anticancer immune responses

    Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity

    Get PDF
    Aggregation of islet amyloid polypeptide (IAPP), a peptide hormone co-synthesized and co-stored with insulin in pancreatic cells and also co-secreted to the circulation, is associated with beta-cell death in type-2 diabetes (T2D). In T2D patients IAPP is found aggregating in the extracellular space of the islets of Langerhans. Although the physiological environments of these intra- and extra-cellular compartments and vascular systems significantly differ, the presence of proteins is ubiquitous but the effects of protein binding on IAPP aggregation are largely unknown. Here we examined the binding of freshly-dissolved IAPP as well as pre-formed fibrils with two homologous proteins, namely cationic lysozyme (Lys) and anionic alpha-lactalbumin (aLac), both of which can be found in the circulation. Biophysical characterizations and a cell viability assay revealed distinct effects of Lys and aLac on IAPP amyloid aggregation, fibril remodelling and cytotoxicity, pointing to the role of protein “corona” in conferring the biological impact of amyloidogenic peptides. Systematic molecular dynamics simulations further provided molecular and structural details for the observed differential effects of proteins on IAPP amyloidosis. This study facilitates our understanding of the fate and transformation of IAPP in vivo, which are expected to have consequential bearings on IAPP glycemic control and T2D pathology

    Methods for identifying surgical wound infection after discharge from hospital: a systematic review.

    Get PDF
    Background: Wound infections are a common complication of surgery that add significantly to the morbidity of patients and costs of treatment. The global trend towards reducing length of hospital stay post-surgery and the increase in day case surgery means that surgical site infections (SSI) will increasingly occur after hospital discharge. Surveillance of SSIs is important because rates of SSI are viewed as a measure of hospital performance, however accurate detection of SSIs post-hospital discharge is not straightforward. Methods: We conducted a systematic review of methods of post discharge surveillance for surgical wound infection and undertook a national audit of methods of post-discharge surveillance for surgical site infection currently used within United Kingdom NHS Trusts. Results: Seven reports of six comparative studies which examined the validity of post-discharge surveillance methods were located; these involved different comparisons and some had methodological limitations, making it difficult to identify an optimal method. Several studies evaluated automated screening of electronic records and found this to be a useful strategy for the identification of SSIs that occurred post discharge. The audit identified a wide range of relevant post-discharge surveillance programmes in England, Scotland and Wales and Northern Ireland; however, these programmes used varying approaches for which there is little supporting evidence of validity and/or reliability. Conclusion: In order to establish robust methods of surveillance for those surgical site infections that occur post discharge, there is a need to develop a method of case ascertainment that is valid and reliable post discharge. Existing research has not identified a valid and reliable method. A standardised definition of wound infection ( e. g. that of the Centres for Disease Control) should be used as a basis for developing a feasible, valid and reliable approach to defining post discharge SSI. At a local level, the method used to ascertain post discharge SSI will depend upon the purpose of the surveillance, the nature of available routine data and the resources available

    Cancer cells under immune attack acquire CD47-mediated adaptive immune resistance independent of the myeloid CD47-SIRP alpha axis

    Get PDF
    Cancer cells exploit CD47 overexpression to inhibit phagocytic elimination and neoantigen processing via the myeloid CD47-SIRPα axis and thereby indirectly evade adaptive T cell immunity. Here, we report on a hitherto unrecognized direct immunoinhibitory feature of cancer cell-expressed CD47. We uncovered that in response to IFNγ released during cognate T cell immune attack, cancer cells dynamically enhance CD47 cell surface expression, which coincides with acquiring adaptive immune resistance toward pro-apoptotic effector T cell mechanisms. Indeed, CRISPR/Cas9-mediated CD47-knockout rendered cancer cells more sensitive to cognate T cell immune attack. Subsequently, we developed a cancer-directed strategy to selectively overcome CD47-mediated adaptive immune resistance using bispecific antibody (bsAb) CD47xEGFR-IgG2s that was engineered to induce rapid and prolonged cancer cell surface displacement of CD47 by internalization. Treatment of CD47(pos) cancer cells with bsAb CD47xEGFR-IgG2s potently enhanced susceptibility to cognate CD8(pos) T cells. Targeting CD47-mediated adaptive immune resistance may open up new avenues in cancer immunotherapy
    • …
    corecore