3,910 research outputs found

    Negative regulation of seed germination by maternal AFB1 and AFB5 in Arabidopsis

    Get PDF
    The plant hormone auxin suppresses seed germination, but how auxin does it remains poorly understood. While studying the functions of the AUXIN SIGNALING F-BOX (AFB) auxin co-receptors in Arabidopsis, we consistently isolated AFB1 and AFB5 in reproduc- tive tissues in co-immunoprecipitation experiments using their interacting protein ASK1 as the bait. However, T₂ seeds of the AFB1 or AFB5 transgenic lines generated for the co-immunoprecipitation experiments frequently failed to germinate, which led to the stud- ies of seed germination in these plants and afb1 and afb5 mutants, and AFB1 and AFB5 expression in nearly mature fruit and imbibed seeds using AFB1:GUS and AFB5:GUS lines. We found that AFB1 and AFB5 acted in maternal tissues to suppress seed germination and their effects were positively correlated with the plants’ sensitivity to indole acetic acid. Conversely, afb1 and afb5 single mutants exhibited faster seed germination than the wild type and the seeds of the afb1-5afb5-5 double mutant germinated even faster than those of the afb1-5 and afb5-5 single mutants. Seed germination of the afb1-5afb5-5 double mutant also exhibited higher sensitivity to gibberellic acid than that of the wild-type and the afb1-3, afb1-5 and afb5-5 single mutants. Both AFB1 and AFB5 were expressed in the funiculus during seed maturation, and AFB1 was also transiently expressed in a small chalazal region surrounding the hilum in the seed coat during seed imbibition. Therefore, AFB1 and AFB5 likely suppress seed germination in the funiculus and AFB1 also briefly suppresses seed germination in the chalaza during seed imbibition.Plant Biology, Ecology and Evolutio

    A method for measuring the Neel relaxation time in a frozen ferrofluid

    Full text link
    We report a novel method of determining the average Neel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated Fe3O4 nanoparticles (diameter 13.7 nm +/- 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude (H0 = 20 kA/m) driven at frequencies of 171 kHz, 232 kHz and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Neel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m3, in agreement with previously published results

    Technical feasibility of small-scale oilseed and on-farm biodiesel production: A Vermont case study

    Get PDF
    This article investigates the technical feasibility of small-scale oilseed production and on-farm processing of biodiesel and livestock feed using primary data from two Vermont farms. Results indicate that small-scale production of sunflowers, canola, and soybeans, and on-farm processing of livestock feed and biodiesel are technically feasible, but yields depend on many factors. Increased local expertise, information-sharing among the farm and Extension communities, and improved access to harvesting and processing equipment can improve productivity and efficiency. Additional experience in seed drying and expeller pressing techniques should reduce fat content in the seed meal, improve meal value, and improve oil production efficiency. © Extension Journal, Inc

    Designer lipid-like peptides

    Get PDF
    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins

    Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage

    Get PDF
    The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to the tethering/docking stage. Ccz1 and Mon1 form a stable protein complex that binds the vacuole membrane. In the absence of the Ccz1–Mon1 complex, the integrity of vacuole SNARE pairing and the unpaired SNARE class C Vps/HOPS complex interaction were both impaired. The Ccz1–Mon1 complex colocalized with other fusion components on the vacuole as part of the cis-SNARE complex, and the association of the Ccz1–Mon1 complex with the vacuole appeared to be regulated by the class C Vps/HOPS complex proteins. Accordingly, we propose that the Ccz1–Mon1 complex is critical for the Ypt7-dependent tethering/docking stage leading to the formation of a trans-SNARE complex and subsequent vacuole fusion
    corecore