8 research outputs found

    Enterocolitis due to immune checkpoint inhibitors: a systematic review

    No full text
    International audienceImmune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed death-1 (PD-1)/ ligand are increasingly used to treat several types of cancer. These drugs enhance antitumour T-cell activity and therefore induce immunerelated adverse effects (irAE), of which gastrointestinal (GI) irAE are among the most frequent and severe. This systematic literature review summarises the clinical manifestations, management and pathophysiology of GI irAE due to immune checkpoint inhibitors. GI irAE induced by anti-CTLA-4 are frequent, potentially severe and resemble IBD, whereas those induced by PD-1 blockade seem to be less frequent and clinically more diverse. Baseline symbiotic gut microbiota is associated with an enhanced antitumour response to immune checkpoint inhibitors and an increased susceptibility to developing enterocolitis, in patients treated with anti-CTLA-4. These findings open new perspectives for possible manipulation of the gut microbiota in order to better identify responders to immune checkpoint inhibitors and to increase their efficacy and safety

    Safety of FOLFIRI + Durvalumab +/− Tremelimumab in Second Line of Patients with Advanced Gastric Cancer: A Safety Run-In from the Randomized Phase II Study DURIGAST PRODIGE 59

    No full text
    Efficacy of immune checkpoint inhibitors (ICI) as monotherapy in 2nd line treatment for gastric or gastro-oesophageal junction (GEJ) adenocarcinoma is low, with no evaluation of efficacy and safety of ICI combined with chemotherapy. The DURIGAST PRODIGE 59 study is a randomised, multicentre, phase II study designed to assess the efficacy and safety of the combination of FOLFIRI + Durvalumab +/− Tremelimumab as 2nd line treatment of patients with advanced gastric/GEJ adenocarcinoma. Here, we report data from the safety run-in phase with FOLFIRI Durvalumab (arm A) or FOLFIRI Durvalumab and Tremelimumab (arm B). Among the 11 patients included, 63.6% experienced at least one grade 3–4 adverse events (AEs) related to the treatment, most frequently neutropenia (36.4%). There was only one immune-related AE (grade 2 hyperthyroidism). Ten serious AEs were described among six patients, but only two were related to the treatment, due to the chemotherapy. One seizure epilepsy related to a brain metastasis was observed, but was not related by the investigator to the treatment. However, the Independent Data Monitoring Committee recommended brain imaging at inclusion. This safety run-in phase demonstrates an expected safety profile of FOLFIRI with Durvalumab +/− Tremelimumab combination allowing the randomised phase II

    Evaluation of the interest to combine a CD4 Th1-inducer cancer vaccine derived from telomerase and atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma: a randomized non-comparative phase II study (TERTIO – PRODIGE 82)

    No full text
    Abstract Background Several cancer immunotherapies that target the PD-L1/PD-1 pathway show promising clinical activity in patients with hepatocellular carcinoma (HCC). However, the standard of care in first-line treatment with atezolizumab (anti-PD-L1 therapy) in combination with bevacizumab is associated with a limited objective response rate. Telomerase reverse transcriptase (TERT) activation meets the criteria of oncogenic addiction in HCC and could be actionable therapeutic target and a relevant tumor antigen. Therefore we hypothesized that combining anti-PD-1/PD-L1 therapy with an anti-telomerase vaccine might be an attractive therapy in HCC. UCPVax is a therapeutic cancer vaccine composed of two separate peptides derived from telomerase (human TERT). UCPVax has been evaluated in a multicenter phase I/II study in non–small cell lung cancers and has demonstrated to be safe and immunogenic, and is under evaluation in combination with atezolizumab in a phase II clinical trial in tumors where telomerase reactivation contributes to an oncogene addiction (HPV+ cancers). The aim of the TERTIO study is to determine the clinical interest and immunological efficacy of a treatment combining the CD4 helper T-inducer cancer anti-telomerase vaccine (UCPVax) with atezolizumab and bevacizumab in unresectable HCC in a multicenter randomized phase II study. Methods Patients with locally advanced, metastatic or unresectable HCC who have not previously received systemic anti-cancer treatment are eligible. The primary end point is the objective response rate at 6 months. Patients will be allocated to a treatment arm with a randomization 2:1. In both arms, patients will receive atezolizumab at fixed dose of 1200 mg IV infusion and bevacizumab at fixed dose of 15 mg/kg IV infusion, every 3 weeks, according to the standard of care. In the experimental arm, these treatments will be combined with the UCPVax vaccine at 0.5 mg subcutaneously. Discussion Combining anti-PD-1/PD-L1 therapy with an anti-telomerase vaccine gains serious consideration in HCC, in order to extend the clinical efficacy of anti-PD-1/PD-L1. Indeed, anti-cancer vaccines can induce tumor-specific T cell expansion and activation and therefore restore the cancer-immunity cycle in patients lacking pre-existing anti-tumor responses. Thus, there is a strong rational to combine immune checkpoint blockade therapy and anticancer vaccine (UCPVax) in order to activate antitumor T cell immunity and bypass the immunosuppression in the tumor microenvironment in HCC. This pivotal proof of concept study will evaluate the efficacy and safety of the combination of a CD4 Th1-inducer cancer vaccine derived from telomerase (UCPVax) and atezolizumab plus bevacizumab in unresectable HCC, as well as confirming their synergic mechanism, and settling the basis for a new combination for future clinical trials. Trial registration NCT05528952
    corecore