39 research outputs found

    A randomized, double-blinded, placebo-controlled study to compare the safety and efficacy of low dose enhanced wild blueberry powder and wild blueberry extract (ThinkBlueâ„¢) in maintenance of episodic and working memory in older adults

    Get PDF
    Previous research has shown beneficial effects of polyphenol-rich diets in ameliorating cognitive decline in aging adults. Here, using a randomized, double blinded, placebo-controlled chronic intervention, we investigated the effect of two proprietary blueberry formulations on cognitive performance in older adults; a whole wild blueberry powder at 500 mg (WBP500) and 1000 mg (WBP1000) and a purified extract at 100 mg (WBE111). One hundred and twenty-two older adults (65–80 years) were randomly allocated to a 6-month, daily regimen of either placebo or one of the three interventions. Participants were tested at baseline, 3, and 6 months on a battery of cognitive tasks targeting episodic memory, working memory and executive function, alongside mood and cardiovascular health parameters. Linear mixed model analysis found intervention to be a significant predictor of delayed word recognition on the Reys Auditory Verbal Learning Task (RAVLT), with simple contrast analysis revealing significantly better performance following WBE111 at 3 months. Similarly, performance on the Corsi Block task was predicted by treatment, with simple contrast analysis revealing a trend for better performance at 3 months following WBE111. Treatment also significantly predicted systolic blood pressure (SBP) with simple contrast analysis revealing lower SBP following intervention with WBE111 in comparison to placebo. These results indicate 3 months intervention with WBE111 can facilitate better episodic memory performance in an elderly population and reduce cardiovascular risk factors over 6 months

    Specific phenolic compounds and sensory properties of a new dealcoholized red wine with pomegranate (Punica granatum L.) extract

    Get PDF
    The pomegranate (Punica granatum L.) fruit has a long history of human consumption and possesses notable antioxidant and cardiovascular properties. This work evaluated the feasibility to provide a new functional beverage based on a dealcoholized red wine matrix supplemented by a pomegranate extract. The potential bioactive compounds in the pomegranate extract, punicalagin A and B and ellagic acid, were analyzed during the downstream process in order to evaluate the functional dose in the final beverage. The addition of pomegranate extract to the dealcoholized red wine resulted in a product with more intense yeast odor, acidity, yeast flavor, and astringency and with a less intense berry flavor. Consumer acceptance of the product was also investigated and the results revealed the existence of a niche of consumers willing to consume dealcoholized wine enriched with pomegranate extract. After tasting, 50% and 40% of those consumers initially interested by this product concept declared to be interested to purchase the control sample and the functional beverage, respectively. The daily consumption of two servings of 250 mL of this new pomegranate-enriched dealcoholized wine provides 82 mg of total ellagitannins, corresponding to the sum of punicalagin A and B and ellagic acid

    Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus-infected human tissues

    Get PDF
    For most viruses, there is a need for antimicrobials that target unique viral molecular properties. Acyclovir (ACV) is one such drug. It is activated into a human herpesvirus (HHV) DNA polymerase inhibitor exclusively by HHV kinases and, thus, does not suppress other viruses. Here, we show that ACV suppresses HIV-1 in HHV-coinfected human tissues, but not in HHV-free tissue or cell cultures. However, addition of HHV-6-infected cells renders these cultures sensitive to anti-HIV ACV activity. We hypothesized that such HIV suppression requires ACV phosphorylation by HHV kinases. Indeed, an ACV monophosphorylated prodrug bypasses the HHV requirement for HIV suppression. Furthermore, phosphorylated ACV directly inhibits HIV-1 reverse transcriptase (RT), terminating DNA chain elongation, and can trap RT at the termination site. These data suggest that ACV anti-HIV-1 activity may contribute to the response of HIV/HHV-coinfected patients to ACV treatment and could guide strategies for the development of new HIV-1 RT inhibitors

    Viral Decay Kinetics in the Highly Active Antiretroviral Therapy-Treated Rhesus Macaque Model of AIDS

    Get PDF
    To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2–58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans

    Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    Get PDF
    BACKGROUND: Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. METHODS AND PRINCIPAL FINDINGS: RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. CONCLUSIONS: Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption

    Etude quantitative du métabolisme de nucléosides antirétroviraux dans des cellules humaines par LC-MS/MS

    No full text
    Our laboratory is specialized in drug discovery and development, more specifically in nucleoside analogue research as potential antiviral agents. The laboratory is organized in several teams, including, chemists, virologists, molecular biologists and pharmacologists. The pharmacologists study the metabolism of both FDA approved and new drugs in vitro and in humans. amdoxovir TM is in development in our laboratory as anti-human immunodeficiency virus (HIV) and is in phase I/II clinical trial. The analytical team studies antiviral agents from cell culture work to clinical trials. To accomplish this goal, we used high performance liquid chromatography tandem mass spectrometry, which is sensitive and specific enough to detect analytes in the ppb range, in a complex biological matrix. Since only the triphosphate forms of the nucleoside analogues are active intracellularly, it was necessary to develop a method to analyze these polar compounds. The method, presented in the first chapter, was successfully used for the simultaneous quantification of the nucleotide (phosphate forms) metabolites of approved nucleoside, amdoxovir as well as for endogenous natural nucleotides in human lymphocytes and macrophages. The limits of quantification were low enough to measure nucleotide levels in the ppb range. In the second chapter, we extended our knowledge on amdoxovir metabolism in primary human lymphocytes cells. To do so, we incubated amdoxovir with nucleosides susceptible of inhibiting its phosphorylation. Then, we established the lack of interaction between amdoxovir and three other nucleosides analogues. Finally, deeper studies on endogenous natural nucleotides provided an understanding of the antiviral synergistic effects between amdoxovir and zidovudine that was demonstrated in vitro and in humans. The development and validation of a methodology to quantify amdoxovir, its metabolite and the approved drug zidovudine in plasma is presented in the first chapter. This method was applied to a proof-of-concept study conducted in 24 HIV-infected individuals.Notre laboratoire, Laboratory of Biochemical Pharmacology (LOBP), dirigé par Dr R.F. Schinazi, est spécialisé dans la recherche sur les nucléosides analogues et plus particulièrement les inhibiteurs de la transcriptase inverse. Au sein de ce laboratoire, l'équipe de pharmacologie a pour rôle d'étudier le métabolisme des molécules en développement ainsi que des molécules déjà commercialisées dans des cellules humaines en culture. Les résultats obtenus guident les chimistes vers une synthèse de composés plus actif et moins toxiques. Pour les molécules les plus avancées, comme l'amdoxovir TM , les études réalisées au laboratoire relèvent du stade II d'essai clinique. Le rôle de l'équipe analytique est de réaliser toutes les mesures liées aux essais cliniques et cellulaires. Pour cela, nous avons choisi d'utiliser des instruments permettant des mesures spécifiques avec une sensibilité suffisante pour mesurer des quantités de l'ordre du ppb. Notre choix s'est donc porté sur la chromatographie haute performance en phase liquide couplée à un spectromètre de masse de type triple quadrupôle. Puisque seuls les métabolites phosphorylés des nucléosides analogues sont actifs dans les cellules, il fut nécessaire de développer une méthode pour analyser ces composés polaires. Cette méthode, présentée dans le premier chapitre, permet l'analyse simultanée de la plupart des métabolites de nucléosides analogues commercialisés, ceux de l'amdoxovir et des nucléotides naturels présents dans les cellules. Les limites de détections sont telles que de très faibles niveaux de triphosphates ont pu être quantifiés dans les macrophages. Ces résultats sont présentés à la fin du second chapitre. Dans le deuxième chapitre, nous avons voulu approfondir nos connaissances sur le métabolisme de l'amdoxovir dans les lymphocytes. Pour cela, nous avons testé l'amdoxovir en présence de nucléosides susceptible d'inhiber sa phosphorylation. Puis nous avons établit l'absence d'interaction directe entre l'amdoxovir et trois autres nucléosides analogues commercialisés. Finalement, des études plus poussées sur les nucléotides naturels donnent une indication pour expliquer les effets synergiques entre l'amdoxovir et la zidovudine. Dans le dernier chapitre, nous présentons le développement et la validation d'une méthodologie permettant de mesurer simultanément les niveaux d'amdoxovir, de son métabolite principal et de la zidovudine dans des échantillons de plasma humain. Cette méthode a été appliquée à une étude clinique dont les résultats sont brièvement décrits

    The Effect of Anthocyanin-Rich Foods or Extracts on Vascular Function in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

    No full text
    Anthocyanins are of interest due to their anti-oxidative and vasodilatory properties. Earlier reviews have shown that berries and other anthocyanin rich foods or extracts can improve vascular health, however the effect of anthocyanins on vascular function has not yet been reviewed. To address this gap in the literature, we conducted a systematic review and meta-analysis of randomised-controlled trials examining anthocyanin-rich foods or extracts on measures of vascular reactivity and/or stiffness in adults. Data from 24 studies were pooled as standardized mean difference (SMD) with 95% confidence intervals (CI). Anthocyanin consumption significantly improved flow-mediated dilation (FMD) following acute (SMD: 3.92%, 95% CI: 1.47, 6.38, p = 0.002; I2 = 91.8%) and chronic supplementation (SMD: 0.84%, 95% CI: 0.55, 1.12, p = 0.000; I2 = 62.5%). Pulse wave velocity was improved following acute supplementation only (SMD: −1.27 m/s, 95% CI: −1.96, −0.58, p = 0.000; I2 = 17.8%). These results support the findings of previous reviews that anthocyanin rich foods or extracts may indeed improve vascular health, particularly with respect to vascular reactivity measured by FMD. More research is required to determine the optimal dosage, and the long-term effects of consumption
    corecore