6 research outputs found
Quadrupolar Na NMR Relaxation as a Probe of Subpicosecond Collective Dynamics in Aqueous Electrolyte Solutions
Nuclear magnetic resonance relaxometry represents a powerful tool for
extracting dynamic information. Yet, obtaining links to molecular motion is
challenging for many ions that relax through the quadrupolar mechanism, which
is mediated by electric field gradient fluctuations and lacks a detailed
microscopic description. For sodium ions in aqueous electrolytes, we combine ab
initio calculations to account for electron cloud effects with classical
molecular dynamics to sample long-time fluctuations, and obtain relaxation
rates in good agreement with experiments over broad concentration and
temperature ranges. We demonstrate that quadrupolar nuclear relaxation is
sensitive to subpicosecond dynamics not captured by previous models based on
water reorientation or cluster rotation. While ions affect the overall water
retardation, experimental trends are mainly explained by dynamics in the first
two solvation shells of sodium, which contain mostly water. This work thus
paves the way to the quantitative understanding of quadrupolar relaxation in
electrolyte and bioelectrolyte systems.Comment: 36 pages, 25 figures, supplementary information include
Evaporation kinetics in swollen porous polymeric networks
Ponencia presentada en el Congreso Euromar 2014.Fil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Monti, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Acosta, Rodolfo Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Velasco, Manuel Isaac. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Silletta, Emilia Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Monti, Gustavo Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Acosta, Rodolfo Héctor. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Gomez, Cesar Gerardo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina.Fil: Strumia, Miriam Cristina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina.Fil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Gomez, Cesar Gerardo. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Strumia, Miriam Cristina. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal; Argentina.Polymer matrices with well defined structure and pore sizes are widely used in several areas of chemistry such as catalysis, enzyme immobilization, HPLC, adsorbents or controlled drug release. These polymers have pores in its structure both in the dry and swollen state. Although it is well known that the structures and properties greatly differ between these two states, only few methods provide information about the swollen one, even though most of the applications involve the matrices in this situation. Nuclear Magnetic Resonance (NMR) is a suitable tool for the study of the molecular dynamics of different liquids spatially confined in macro, meso and nanopores, through changes in the relaxation times. In transverse relaxation experiments, either diffusion inside the pore, or relaxation induced by mobility restriction of the liquid near the wall, are additional
sources of relaxation, which are extremely useful in the determination of structural and functional properties.Fil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Monti, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Acosta, Rodolfo Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Velasco, Manuel Isaac. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Silletta, Emilia Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Monti, Gustavo Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Acosta, Rodolfo Héctor. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Gomez, Cesar Gerardo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina.Fil: Strumia, Miriam Cristina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina.Fil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Gomez, Cesar Gerardo. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Strumia, Miriam Cristina. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal; Argentina.Física de los Materiales Condensado
Desktop MRI as a promising tool for mapping intra-aneurismal flow
In this work we evaluate the performance of a 40-mm diameter bore 0.2T desktop Halbach tomograph to obtain 2D and 3D velocity maps for studying intra-aneurismal flow in the presence or absence of nitinol meshed implants with the aim of optimizing the flow diverter efficacy. Phantoms with known spatial velocity distribution were used to determine the performance of the MRI system. Maximum velocities of about 200mm/s could be measured with a precision of 1% at a spatial resolution of 0.5×0.5×1mm3. This accuracy is suitable to evaluate in vitro intra-aneurismal flow under different conditions such as variable flow rates, different vessel-aneurysm geometry, as well as the influence of metallic flow diverters on the intra-aneurismal flow distribution. The information obtained non-invasively with desktop tomographs can be used to complement in vivo studies in order to decide the optimum flow diverter.Fil: Perlo, Josefina. Rwth Aachen University; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Danieli, Ernesto Pablo. Rwth Aachen University; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cattaneo, Giorgio. Acandis; AlemaniaFil: Acosta, Rodolfo Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Blümich, Bernhard. Rwth Aachen University; AlemaniaFil: Casanova, Federico Martin. Magritek; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Monitoring Molecular Transport across Colloidal Membranes
The
controlled shaping and surface functionalization of colloidal
particles has provided opportunities for the development of new materials
and responsive particles. The possibility of creating hollow particles
with semipermeable walls allows modulating molecular transport properties
on colloidal length scales. While shapes and sizes can typically be
observed by optical means, the underlying chemical and physical properties
are often invisible. Here, we present measurements of cross-membrane
transport via pulsed field gradient NMR in packings of hollow colloidal
particles. The work is conducted using a systematic selection of particle
sizes, wall permeabilities, and osmotic pressures and allows tracking
organic molecules as well as ions. It is also shown that, while direct
transport of molecules can be measured, indirect markers can be obtained
for invisible species via the osmotic pressure as well. The cross-membrane
transport information is important for applications in nanoconfinement,
nanofiltration, nanodelivery, or nanoreactor devices
Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells
The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In particular, hot spots of charge storage are identified. In addition, the measurements reveal the capability to measure transient internal current effects, at a level of μA, which are shown to be dependent upon the state of charge. These effects highlight noncontact battery characterization opportunities. The diagnostic power of this technique could be used for the assessment of cells in research, quality control, or during operation, and could help uncover details of charge storage and failure processes in cells.Fil: Hu, Yinan. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Iwata, Geoffrey Z.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Mohammadi, Mohaddese. University of New York; Estados UnidosFil: Silletta, Emilia Victoria. University of New York; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Wickenbrock, Arne. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Blanchard, John W.. Helmholtz Institute Mainz; AlemaniaFil: Budker, Dmitry. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Jerschow, Alexej. University of New York; Estados Unido