14 research outputs found

    The Morpho-kinematic architecture of super star clusters in the center of NGC 253

    Get PDF
    The center of the nearby galaxy NGC 253 hosts a population of more than a dozen super star clusters (SSCs) that are still in the process of forming. The majority of the star formation of the burst is concentrated in these SSCs, and the starburst is powering a multiphase outflow from the galaxy. In this work, we measure the 350 GHz dust continuum emission toward the center of NGC 253 at 47 mas (0.8 pc) resolution using data from the Atacama Large Millimeter/submillimeter Array. We report the detection of 350 GHz (dust) continuum emission in the outflow for the first time, associated with the prominent South-West streamer. In this feature, the dust emission has a width of ≈8 pc, is located at the outer edge of the CO emission, and corresponds to a molecular gas mass of ∌(8–17)×106 M⊙. In the starburst nucleus, we measure the resolved radial profiles, sizes, and molecular gas masses of the SSCs. Compared to previous work at the somewhat lower spatial resolution, the SSCs here break apart into smaller substructures with radii 0.4–0.7 pc. In projection, the SSCs, dust, and dense molecular gas appear to be arranged as a thin, almost linear, structure roughly 155 pc in length. The morphology and kinematics of this structure can be well explained as gas following x2 orbits at the center of a barred potential. We constrain the morpho-kinematic arrangement of the SSCs themselves, finding that an elliptical, angular-momentum-conserving ring is a good description of both the morphology and kinematics of the SSCs

    The distribution and origin of C₂H in NGC 253 from ALCHEMI

    Get PDF
    Context. Observations of chemical species can provide insights into the physical conditions of the emitting gas however it is important to understand how their abundances and excitation vary within different heating environments. C2H is a molecule typically found in PDR regions of our own Galaxy but there is evidence to suggest it also traces other regions undergoing energetic processing in extragalactic environments. / Aims. As part of the ALCHEMI ALMA large program, we map the emission of C2H in the central molecular zone of the nearby starburst galaxy NGC 253 at 1.6″ (28 pc) resolution and characterize it to understand its chemical origins. / Methods. We used spectral modeling of the N = 1−0 through N = 4−3 rotational transitions of C2H to derive the C2H column densities towards the dense clouds in NGC 253. We then use chemical modeling, including photodissociation region (PDR), dense cloud, and shock models to investigate the chemical processes and physical conditions that are producing the molecular emission. / Results. We find high C2H column densities of ∌1015 cm−2 detected towards the dense regions of NGC 253. We further find that these column densities cannot be reproduced if it is assumed that the emission arises from the PDR regions at the edge of the clouds. Instead, we find that the C2H abundance remains high even in the high visual extinction interior of these clouds and that this is most likely caused by a high cosmic-ray ionization rate

    Reconstructing the shock history in the CMZ of NGC 253 with ALCHEMI

    Get PDF
    Context: HNCO and SiO are well-known shock tracers and have been observed in nearby galaxies, including the nearby (D = 3.5 Mpc) starburst galaxy NGC 253. The simultaneous detection of these two species in regions where the star-formation rate is high may be used to study the shock history of the gas. // Aims: We perform a multi-line molecular study of NGC 253 using the shock tracers SiO and HNCO and aim to characterize its gas properties. We also explore the possibility of reconstructing the shock history in the central molecular zone (CMZ) of the galaxy. // Methods: Six SiO transitions and eleven HNCO transitions were imaged at high resolution 1.″6 (28 pc) with the Atacama Large Millimeter/submillimeter Array (ALMA) as part of the ALCHEMI Large Programme. Both non local thermaldynamic equilibrium (non-LTE) radiative transfer analysis and chemical modeling were performed in order to characterize the gas properties and investigate the chemical origin of the emission. // Results: The nonLTE radiative transfer analysis coupled with Bayesian inference shows clear evidence that the gas traced by SiO has different densities and temperatures than that traced by HNCO, with an indication that shocks are needed to produce both species. Chemical modeling further confirms such a scenario and suggests that fast and slow shocks are responsible for SiO and HNCO production, respectively, in most GMCs. We are also able to infer the physical characteristics of the shocks traced by SiO and HNCO for each GMC. // Conclusions: Radiative transfer and chemical analysis of the SiO and HNCO in the CMZ of NGC 253 reveal a complex picture whereby most of the GMCs are subjected to shocks. We speculate on the possible shock scenarios responsible for the observed emission and provide potential history and timescales for each shock scenario. Observations of higher spatial resolution for these two species are required in order to quantitatively differentiate between the possible scenarios

    The LOFAR Two-metre Sky Survey V. Second data release

    Get PDF
    In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 ΌJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 ΌJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset

    Hidden Gems on a Ring: Infant Massive Clusters and Their Formation Timeline Unveiled by ALMA, HST, and JWST in NGC 3351

    Get PDF
    We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∌105 M ⊙), small radii (â‰Č 5 pc), large escape velocities (6-10 km s−1), and short freefall times (0.5-1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed H ii region-cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∌1-2 Myr before cluster formation as starless clumps, to ∌4-6 Myr after as exposed H ii region-cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows

    An encrusting kleptoparasite-host interaction from the early Cambrian

    No full text
    Parasite–host systems are pervasive in nature but are extremely difficult to convincingly identify in the fossil record. Here we report quantitative evidence of parasitism in the form of a unique, enduring life association between tube-dwelling organisms encrusted to densely clustered shells of a monospecific organophosphatic brachiopod assemblage from the lower Cambrian (Stage 4) of South China. Brachiopods with encrusting tubes have decreased biomass (indicating reduced fitness) compared to individuals without tubes. The encrusting tubes orient tightly in vectors matching the laminar feeding currents of the host, suggesting kleptoparasitism. With no convincing parasite–host interactions known from the Ediacaran, this widespread sessile association reveals intimate parasite–host animal systems arose in early Cambrian benthic communities and their emergence may have played a key role in driving the evolutionary and ecological innovations associated with the Cambrian radiation
    corecore