96 research outputs found

    High field magnetic resonant properties of beta'-(ET)2SF5CF2SO3

    Get PDF
    A systematic electron spin resonance (ESR) investigation of the low temperature regime for the (ET)2SF5CF2SO3 system was performed in the frequency range of ~200-700 GHz, using backward wave oscillator sources, and at fields up to 25 T. Newly acquired access to the high frequency and fields shows experimental ESR results in agreement with the nuclear magnetic resonance (NMR) investigation, revealing evidence that the transition seen at 20 K is not of conventional spin-Peierls order. A significant change of the spin resonance spectrum in beta'-(ET)2SF5CF2SO3 at low temperatures, indicates a transition into a three-dimensional-antiferromagnetic (3D AFM) phase.Comment: 4 pages, 7 figures, minor grammatical change

    Charge Ordering in alpha-(BEDT-TTF)2I3 by synchrotron x-ray diffraction

    Full text link
    The spatial charge arrangement of a typical quasi-two-dimensional organic conductor alpha-(BEDT-TTF)2I3 is revealed by single crystal structure analysis using synchrotron radiation. The results show that the horizontal stripe type structure, which was suggested by mean field theory, is established. We also find the charge disproportion above the metal-insulator transition temperature and a significant change in transfer integrals caused by the phase transition. Our result elucidates the insulating phase of this material as a 2k_F charge density localization.Comment: 8 pages, 5 figures, 1 tabl

    N-Methylimidazole Promotes The Reaction Of Homophthalic Anhydride With Imines

    Get PDF
    The addition of N-methylimidazole (NMI) to the reaction of homophthalic anhydride with imines such as pyridine-3-carboxaldehyde-N-trifluoroethylimine (9) reduces the amount of elimination byproduct and improves the yield of the formal cycloadduct, tetrahydroisoquinolonic carboxylate 10. Carboxanilides of such compounds are of interest as potential antimalarial agents. A mechanism that rationalizes the role of NMI is proposed, and a gram-scale procedure for the synthesis and resolution of 10 is also described

    Variations in strain affect friction and microstructure evolution in copper under a reciprocating tribological load

    Get PDF
    The microstructure of the materials constituting a metallic frictional contact strongly influences tribological performance. Being able to tailor friction and wear is challenging due to the complex microstructure evolution associated with tribological loading. Here, we investigate the effect of the strain distribution on these processes. High-purity copper plates were morphologically surface textured with two parallel rectangles—referred to as membranes—over the entire sample length by micro-milling. By keeping the width of these membranes constant and only varying their height, reciprocating tribological loading against sapphire discs resulted in different elastic and plastic strains. Finite element simulations were carried out to evaluate the strain distribution in the membranes. It was found that the maximum elastic strain increases with decreasing membrane stiffness. The coefficient of friction decreases with increasing membrane aspect ratio. By analyzing the microstructure and local crystallographic orientation, we found that both show less change with decreasing membrane stiffness

    Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes

    Full text link
    • …
    corecore