276 research outputs found

    Superconductivity and Charge Density Wave in a Quasi-One-Dimensional Spin Gap System

    Full text link
    We consider a model of spin-gapped chains weakly coupled by Josephson and Coulomb interactions. Combining such non-perturbative methods as bosonization and Bethe ansatz to treat the intra-chain interactions with the Random Phase Approximation for the inter-chain couplings and the first corrections to this, we investigate the phase diagram of this model. The phase diagram shows both charge density wave ordering and superconductivity. These phases are seperated by a line of critical points which exhibits an approximate an SU(2) symmetry. We consider the effects of a magnetic field on the system. We apply the theory to the material Sr_2 Ca_12 Cu_24 O_41 and suggest further experiments.Comment: 14 pages, 7 figure; submitted to PRB; Revised with new version: references added; section on the flux state remove

    Strongly correlated fermions with nonlinear energy dispersion and spontaneous generation of anisotropic phases

    Full text link
    Using the bosonization approach we study fermionic systems with a nonlinear dispersion relation in dimension d>2. We explicitly show how the band curvature gives rise to interaction terms in the bosonic version of the model. Although these terms are perturbatively irrelevant in relation to the Landau Fermi liquid fixed point, they become relevant perturbations when instabilities take place. Using a coherent state path integral technique we built up the effective action that governs the dynamics of the Fermi surface fluctuations. We consider the combined effect of fermionic interactions and band curvature on possible anisotropic phases triggered by negative Landau parameters. In particular we study in some detail the phase diagram for the isotropic/nematic/hexatic quantum phase transition.Comment: RevTeX4, 9 pages, 2 eps figures, Final version as appeared in Phys.Rev.

    Coulomb Blockade Regime of a Single-Wall Nanotube

    Full text link
    A model of carbon nanotube at half filling is studied. The Coulomb interaction is assumed to be unscreened. It is shown that this allows to develop the adiabatic approximation which leads to considerable simplifications in calculations of the excitation spectrum. We give a detailed analysis of the spectrum and the phase diagram at half filling and discuss effects of small doping. At small doping several phases develop strong superconducting fluctuations corresponding to various types of pairing

    Interacting Electrons on a Fluctuating String

    Full text link
    We consider the problem of interacting electrons constrained to move on a fluctuating one-dimensional string. An effective low-energy theory for the electrons is derived by integrating out the string degrees of freedom to lowest order in the inverse of the string tension and mass density, which are assumed to be large. We obtain expressions for the tunneling density of states, the spectral function and the optical conductivity of the system. Possible connections with the phenomenology of the cuprate high temperature superconductors are discussed.Comment: 14 pages, 1 figur

    Anderson-Yuval approach to the multichannel Kondo problem

    Full text link
    We analyze the structure of the perturbation expansion of the general multichannel Kondo model with channel anisotropic exchange couplings and in the presence of an external magnetic field, generalizing to this case the Anderson-Yuval technique. For two channels, we are able to map the Kondo model onto a generalized resonant level model. Limiting cases in which the equivalent resonant level model is solvable are identified. The solution correctly captures the properties of the two channel Kondo model, and also allows an analytic description of the cross-over from the non Fermi liquid to the Fermi liquid behavior caused by the channel anisotropy.Comment: 23 pages, ReVTeX, 4 figures av. on reques

    Theory of the Quantum Hall Smectic Phase II: Microscopic Theory

    Full text link
    We present a microscopic derivation of the hydrodynamic theory of the Quantum Hall smectic or stripe phase of a two-dimensional electron gas in a large magnetic field. The effective action of the low energy is derived here from a microscopic picture by integrating out high energy excitations with a scale of the order the cyclotron energy.The remaining low-energy theory can be expressed in terms of two canonically conjugate sets of degrees of freedom: the displacement field, that describes the fluctuations of the shapes of the stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and improved Introduction. Final version as it will appear in Physical Review

    Kondo effect in crossed Luttinger liquids

    Full text link
    We study the Kondo effect in two crossed Luttinger liquids, using Boundary Conformal Field Theory. We predict two types of critical behaviors: either a two-channel Kondo fixed point with a nonuniversal Wilson ratio, or a new theory with an anomalous response identical to that found by Furusaki and Nagaosa (for the Kondo effect in a single Luttinger liquid). Moreover, we discuss the relevance of perturbations like channel anisotropy, and we make links with the Kondo effect in a two-band Hubbard system modeled by a channel-dependent Luttinger Hamiltonian. The suppression of backscattering off the impurity produces a model similar to the four-channel Kondo theory.Comment: 7 pages, RevteX, to be published in Physical Review

    Dynamical spin correlations in Heisenberg ladder under magnetic field and correlation functions in SO(5) ladder

    Full text link
    The zero-temperature dynamical spin-spin correlation functions are calculated for the spin-1/2 two-leg Heisenberg ladder in a magnetic field above the lower critical field Hc1. The dynamical structure factors are calculated which exhibit both massless and massive excitations. These modes appear in different sectors characterized by the parity in the rung direction and by the momentum in the direction of the chains. The structure factors have power-law singularities at the lower edges of their support. The results are also applicable to spin-1 Heisenberg chain. The implications are briefly discussed for various correlation functions and the pi-resonance in the SO(5) symmetric ladder model.Comment: 15 pages, 6 figures, added references; final version to appear in Phys. Rev.

    Moisture susceptibility of high and low compaction dry process crumb rubber modified asphalt mixtures

    Get PDF
    The field performance of dry process crumb rubber-modified (CRM) asphalt mixtures has been reported to be inconsistent with stripping and premature cracking on the surfacing. One of the concerns is that, because achieving field compaction of CRM material is difficult due to the inherent resilient nature of the rubber particle, nonuniform field compaction may lead to a deficient bond between rubber and bitumen. To assess the influence of compaction, a series of CRM and control mixtures was produced and compacted at two levels: 4% (low, optimum laboratory compaction) and 8% (high, field experience) air void content. The long-term durability, in regard to moisture susceptibility of the mixtures, was assessed by conducting repeated moisture conditioning cycles. Mechanical properties (stiffness, fatigue, and resistance to permanent deformation) were determined in the Nottingham Asphalt Tester. Results indicated that compared with conventional mixtures, the CRM mixtures, regardless of compaction effort, are more susceptible to moisture with the degree of susceptibility primarily depending on the amount of rubber in the mixture, rather than the difference in compaction. This behavior is different from that of conventional mixtures in which, as expected, poorly compacted mixtures were found to be more susceptible to moisture than were well-compacted mixtures

    High prevalence of radiographic erosions in early, untreated PsA: results from the SpARRO cohort

    Get PDF
    Aims To investigate the prevalence and distribution of bone erosions in an early psoriatic arthritis (PsA) population using conventional radiography (CR) and to explore the agreement between CR and ultrasound (US) detected bone erosions. Methods Newly diagnosed, treatment naïve PsA patients fulfilling the ClASsification for Psoriatic Arthritis (CASPAR) classification criteria of ≤5 years symptom duration were recruited as part of the Leeds Spondyloarthropathy Register for Research and Observation and underwent CR and US examination of hands and feet. Results Overall, 4655 hand and feet joints were assessed in 122 patients. CR erosions were detected in 24.6% (n=30) with lowest prevalence seen below 8 months of symptoms (17.5% vs 24.3%>24 months). The number of erosions was higher on CR (1.55% (63/4,655); US 1.04% (34/3,270)), with 5th metatarsophalangeal (MTP) joint being the most affected site in both CR (5.21% (11/211)) and US (7.14% (15/210)). Erosions in CR were more evenly distributed compared with US where three-quarters of the total number of bone erosions were detected in wrists, second metacarpophalangeal (MCP) and fifth MTP joints. Most joints had almost perfect prevalence-adjusted bias-adjusted kappa values ranging from 0.91 to 1. Conclusions Erosions were seen in a quarter of patients with newly diagnosed, untreated PsA with a declining trend around the 8-month symptom duration cut-off. High levels of agreement between CR and US were seen with CR detecting more erosions. A focused US assessment of the wrist, second MCP and fifth MTP joints may be useful to detect bone erosions in early PsA
    corecore