69 research outputs found

    REMOTE HOLTER LONGITUDINAL MONITORING - PROMISING DIRECTION IN TELEHEALTH DEVELOPMENT

    Get PDF
    The aim of the telehealth project is to study possible performance of remote analysis of Holter outcomes. We present experience of of our institution and remore Holter monitoring fulfillment. We studied diagnostic advantages of its remote performance. We used portable recorders and proprietary software. Analysis was performed by three physicians of the functional diagnosis department, Scientific Research Institute - Ochapovsky Regional Clinic Hospital #1. By present we performed more 2000 examinations. Clinical cases demonstrating advantages of remote Holter monitoring are described. We discussed perspective of this direction of telehealth. To this system 25 stations of registration devices were connected up in cities and territories of Krasnodar region. We apply 30 cardio-recorders of various producers. Thus, in Krasnodar region the full-scale system of remote Holter monitoring functions and advances now and this has been reached due to active introduction of modern innovative technologies in the field of communication, informatics and development of the software

    Π’ΠΏΠ»ΠΈΠ² стрСсу Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— свинСй

    Get PDF
    In recent decades, the intensity of the use of pigs has increased significantly. In such conditions, the body of animals is used almost to the limit of its capabilities. In this regard, the administration of many physiological functions is disrupted, the morbidity and decrease in the performance of pigs significantly increase. The increase in the level of drug use does not solve these issues. For example, the uncontrolled use of antibiotics can lead to even more significant problems - the development of antibiotic resistance. Despite this, in modern pig breeding, considerable attention is paid to the development and implementation of methods for the prevention of diseases in pigs. An important component of such activities is to ensure optimal conditions for the comfort and well-being of animals. This, in turn, implies a reduction in the negative impact of stress factors in raising and fattening pigs. The aim of our research was to get acquainted with modern literature data on the features of the influence of stressors on productivity and physiological functions of pigs. During the writing of this review article, we reviewed data from current research on the effects of stressors on the productivity and physiological functions of pigs in rearing and fattening. For this purpose, the funds of the scientific library of Bila Tserkva National Agrarian University, scientific research systems Science-Direct and PubMed were used. An important task of veterinary service of modern pig breeding complexes is to ensure optimal parameters of the microclimate, feeding quality feed, reducing the negative impact of stress factors. Ensuring proper housing conditions contributes to the improvement of qualitative and quantitative indicators of pig productivity (at slaughter, during slaughter, etc.). In this regard, we believe that a promising area of research is to study the effects of certain stressors and their combinations on the body of pigs and find methods to correct them.Π’ останні дСсятиліття Ρ–Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ використання свинСй Π·Π½Π°Ρ‡Π½ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ”Ρ‚ΡŒΡΡ. Π’ Ρ‚Π°ΠΊΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌ Ρ‚Π²Π°Ρ€ΠΈΠ½ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎ Π½Π° ΠΌΠ΅ΠΆΡ– своїх моТливостСй. Π£ зв’язку Π· Ρ†ΠΈΠΌ ΠΏΠΎΡ€ΡƒΡˆΡƒΡ”Ρ‚ΡŒΡΡ координація Π±Π°Π³Π°Ρ‚ΡŒΠΎΡ… Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΉ, Π·Π½Π°Ρ‡Π½ΠΎ ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ”Ρ‚ΡŒΡΡ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° Π·Π½ΠΈΠΆΡƒΡŽΡ‚ΡŒΡΡ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ продуктивності свинСй. ΠŸΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π½Ρ рівня використання Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… засобів Π½Π΅ дозволяє Π²ΠΈΡ€Ρ–ΡˆΠΈΡ‚ΠΈ Ρ†Ρ– питання. Наприклад, Π½Π΅ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠΎΠ²Π°Π½Π΅ використання Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΡ–Π² ΠΌΠΎΠΆΠ΅ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΠΈ Π΄ΠΎ появи Ρ‰Π΅ ΡΠ΅Ρ€ΠΉΠΎΠ·Π½Ρ–ΡˆΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ – Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ антибіотикорСзистСнтності. Π—Π²Π°ΠΆΠ°ΡŽΡ‡ΠΈ Π½Π° Ρ†Π΅, Ρƒ сучасному свинарстві Π·Π½Π°Ρ‡Π½Π° ΡƒΠ²Π°Π³Π° ΠΏΡ€ΠΈΠ΄Ρ–Π»ΡΡ”Ρ‚ΡŒΡΡ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– Ρ‚Π° Π²ΠΏΡ€ΠΎΠ²Π°Π΄ΠΆΠ΅Π½Π½ΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² ΠΏΡ€ΠΎΡ„Ρ–Π»Π°ΠΊΡ‚ΠΈΠΊΠΈ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΡŒ свинСй. Π’Π°ΠΆΠ»ΠΈΠ²ΠΎΡŽ складовою Ρ‚Π°ΠΊΠΈΡ… Π·Π°Ρ…ΠΎΠ΄Ρ–Π² Ρ” забСзпСчСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ² ΠΊΠΎΠΌΡ„ΠΎΡ€Ρ‚Ρƒ Ρ‚Π° Π΄ΠΎΠ±Ρ€ΠΎΠ±ΡƒΡ‚Ρƒ Ρ‚Π²Π°Ρ€ΠΈΠ½. Π¦Π΅ ΡΠ²ΠΎΡ”ΡŽ Ρ‡Π΅Ρ€Π³ΠΎΡŽ ΠΏΠ΅Ρ€Π΅Π΄Π±Π°Ρ‡Π°Ρ” зниТСння Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ стрСсових Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π² ΠΏΡ–Π΄ час вирощування Ρ‚Π° Π²Ρ–Π΄Π³ΠΎΠ΄Ρ–Π²Π»Ρ– свинСй. ΠœΠ΅Ρ‚ΠΎΡŽ нашого дослідТСння Π±ΡƒΠ»ΠΎ ознайомлСння Π· сучасними Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΠΌΠΈ Π΄Π°Π½ΠΈΠΌΠΈ ΠΏΡ€ΠΎ особливості Π²ΠΏΠ»ΠΈΠ²Ρƒ стрСсових Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π² Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— свинСй. ΠŸΡ–Π΄ час написання Ρ†Ρ–Ρ”Ρ— оглядової статті ΠΌΠΈ ознайомилися Π· Π΄Π°Π½ΠΈΠΌΠΈ сучасних Π½Π°ΡƒΠΊΠΎΠ²ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ‰ΠΎΠ΄ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ стрСсових Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π² Π½Π° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ– Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— свинСй Π½Π° Π΄ΠΎΡ€ΠΎΡ‰ΡƒΠ²Π°Π½Π½Ρ– Ρ‚Π° Π²Ρ–Π΄Π³ΠΎΠ΄Ρ–Π²Π»Ρ–. Π— Ρ†Ρ–Ρ”ΡŽ ΠΌΠ΅Ρ‚ΠΎΡŽ використовували Ρ„ΠΎΠ½Π΄ΠΈ Π½Π°ΡƒΠΊΠΎΠ²ΠΎΡ— Π±Ρ–Π±Π»Ρ–ΠΎΡ‚Π΅ΠΊΠΈ Π‘Ρ–Π»ΠΎΡ†Π΅Ρ€ΠΊΡ–Π²ΡΡŒΠΊΠΎΠ³ΠΎ Π½Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π³Ρ€Π°Ρ€Π½ΠΎΠ³ΠΎ унівСрситСту, Π½Π°ΡƒΠΊΠΎΠ²Ρ– ΠΏΠΎΡˆΡƒΠΊΠΎΠ²Ρ– систСми Science-Direct Ρ‚Π° PubMed. Π’Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ завданням Π²Π΅Ρ‚Π΅Ρ€ΠΈΠ½Π°Ρ€Π½ΠΎΠ³ΠΎ обслуговування сучасних комплСксів Π· вирощування свинСй Ρ” забСзпСчСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΌΡ–ΠΊΡ€ΠΎΠΊΠ»Ρ–ΠΌΠ°Ρ‚Ρƒ, годівля якісними ΠΊΠΎΡ€ΠΌΠ°ΠΌΠΈ, зниТСння Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ стрСсових Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π². ЗабСзпСчСння Π½Π°Π»Π΅ΠΆΠ½ΠΈΡ… ΡƒΠΌΠΎΠ² утримання сприяє ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Π½ΡŽ якісних Ρ– ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² продуктивності свинСй. Π£ зв’язку Π· Ρ†ΠΈΠΌ Π²Π²Π°ΠΆΠ°Ρ”ΠΌΠΎ, Ρ‰ΠΎ пСрспСктивним напрямком Π½Π°ΡƒΠΊΠΎΠ²ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρ” вивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΎΠΊΡ€Π΅ΠΌΠΈΡ… стрСсових Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π² Ρ‚Π° Ρ—Ρ…Π½Ρ–Ρ… ΠΊΠΎΠΌΠ±Ρ–Π½Π°Ρ†Ρ–ΠΉ Π½Π° ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌ свинСй Ρ– ΠΏΠΎΡˆΡƒΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Ρ—Ρ… ΠΊΠΎΡ€Π΅ΠΊΡ†Ρ–Ρ—

    ВлияниС рСконструкционных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сканирования ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎ-эмиссионного Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π° Π½Π° эффСкт частичного объСма патологичСского ΠΎΡ‡Π°Π³Π°

    Get PDF
    In this work, the following tasks were solved: to perform a comparative analysis of data processing methods when calculating recovery factors; to evaluate the influence of time-of-flight technology and PSF function on the recovery factor and the forecast of recovery factor deviation for potential pathological foci with a diameter of 6–8 mm; to evaluate the influence of parameters of iterative reconstruction algorithms, Gaussian filter and axial filters on the recovery factor. The calculation of the recovery factors was carried out on the basis of quantitative characteristics obtained in the analysis of reconstructions of images of the IEC phantom with six spheres installed inside and filled with a radiopharmaceutical. Eight series of experiments with background / sphere activity ratios 1/3, 1/4, 1/6, 1/8, 1/12, 1/14, 1/16, 1/20 were carried out with the same concentration of activity in the spheres during each separate experiment. The forecast of the effect of the partial volume effect on lesions with a diameter of 6 to 8 mm was carried out, taking into account the used reconstruction algorithms. It is advisable to use the results obtained to harmonize diagnostic protocols for scanning with positron emission tomographs using the input parameters of reconstruction algorithms and filters, which will minimize the error in the quantitative assessment of a radiopharmaceutical when analyzing the dynamics of the development of a pathological process, as well as the response of pathology to therapy.Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ расчСтС коэффициСнтов восстановлСния. ΠžΡ†Π΅Π½Π΅Π½ΠΎ влияниС врСмяпролСтной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ PSF-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° коэффициСнт восстановлСния ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· Π΄Π΅Π²ΠΈΠ°Ρ†ΠΈΠΈ коэффициСнта восстановлСния для ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… патологичСских ΠΎΡ‡Π°Π³ΠΎΠ² Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 6–8 ΠΌΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… рСконструкционных Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° Гаусса ΠΈ Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² – Π½Π° коэффициСнт восстановлСния. РасчСт коэффициСнтов восстановлСния Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π½Π° основС количСствСнных характСристик, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ рСконструкций ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Ρ„Π°Π½Ρ‚ΠΎΠΌΠ° IEC c ΡˆΠ΅ΡΡ‚ΡŒΡŽ сфСрами, инсталлированными Π²Π½ΡƒΡ‚Ρ€ΡŒ ΠΈ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΌΠΈ радиофармацСвтичСским ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ восСмь сСрий экспСримСнтов с ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΠΈ активности Ρ„ΠΎΠ½/сфСра 1/3, 1/4, 1/6, 1/8, 1/12, 1/14, 1/16, 1/20 ΠΏΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ активности Π² сфСрах Π²ΠΎ врСмя ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ экспСримСнта. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· влияния эффСкта частичного объСма Π½Π° ΠΎΡ‡Π°Π³ΠΈ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΎΡ‚ 6 Π΄ΠΎ 8 ΠΌΠΌ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… рСконструкционных Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ диагностичСских ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ² сканирования Π½Π° ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½ΠΎ-эмиссионных Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π°Ρ… Π·Π° счСт Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² рСконструкционных Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΈ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡˆΠΈΠ±ΠΊΡƒ ΠΏΡ€ΠΈ количСствСнной ΠΎΡ†Π΅Π½ΠΊΠ΅ радиофармацСвтичСского ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ развития патологичСского процСсса, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ

    МРВ ΠΈ КВ-вСнография Π² диагностикС гСмодинамичСских Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСскими заболСваниями Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй. Π§Π°ΡΡ‚ΡŒ III. ВозмоТности КВ-исслСдований Π² диагностикС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ

    Get PDF
    As a result of solving a large number of technical problems (increasing the area of anatomical coverage and scanning speed, increasing the signal-to-noise ratio, improving spatial and contrast resolution, building a color image quality in 3D mode, significantly reducing the radiation dose), the method of computed tomography imaging of the vascular system has won a leading position in the world today. However, if CT Angiography is used everywhere and daily in the diagnosis of arterial pathology, this method has not yet received clinical recognition in patients with chronic venous diseases.This review of the literature analyzes the scientific data published in the world on the results of CT Venography. Methods of indirect and direct contrast CT Venography are described. The possibility of using contrast CT Venography in the diagnosis of deep vein thrombosis is shown, where the accuracy, sensitivity and specificity of the method according to foreign authors is up to 97.9%, 96.8% and 100%, respectively. This method acquires particular importance in the diagnosis of pelvic vein thrombosis and inferior Vena cava, where the informative value of USDS is lower. The second clinical direction that is actively developing today is the combined use of CT Venography and CT Angiopulmonography in the diagnosis of a deadly complication of pulmonary embolism. The prospects of these attempts are preferable by the following advantages: the single-time study and the absence of the need for additional administration of contrast agents, the speed of scanning, and obtaining additional information about the state of the peripheral venous system in patients with venous thromboembolism.Another and irreplaceable tool of contrast-enhanced CT Venography can become in the study of the features of the topographic and anatomical structure of the venous bed. Using their own research, the authors demonstrate the possibilities of direct CT Venography in the visualization of the venous system of the lower extremities.The need for more accurate topical diagnostics with 3D visualization of the venous system of the lower extremities and pelvis by CT-Venography is due to the growing interest in recent years of vascular and interventional surgeons to test and more actively implement endovasal methods of correction of venous blood flow in phlebological practice.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ большого количСства тСхничСских Π·Π°Π΄Π°Ρ‡ (ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π·ΠΎΠ½Ρ‹ анатомичСского покрытия, скорости сканирования ΠΈ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ, ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ пространствСнного ΠΈ контрастного Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, построСниС Ρ†Π²Π΅Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ качСствСнного изобраТСния Π² 3D-Ρ€Π΅ΠΆΠΈΠΌΠ΅, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ сниТСниС Π΄ΠΎΠ·Ρ‹ облучСния) ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎ-томографичСской Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ сосудистой систСмы Π·Π°Π²ΠΎΠ΅Π²Π°Π» Π½Π° сСгодня Π² ΠΌΠΈΡ€Π΅ Π»ΠΈΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ. Однако Ссли Π² диагностикС Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ КВ-ангиография ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ повсСмСстно ΠΈ Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎ, Ρ‚ΠΎ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСскими заболСваниями Π²Π΅Π½ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» клиничСского признания.Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡ€Π΅ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ проводится Π°Π½Π°Π»ΠΈΠ· ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π² ΠΌΠΈΡ€Π΅ Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°Ρ… использования КВ-Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. ΠžΠΏΠΈΡΠ°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ провСдСния нСпрямой ΠΈ прямой контрастной КВ-Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ возмоТности использования контрастной КВ-Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π² диагностикС Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Π° Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… Π²Π΅Π½, Π³Π΄Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΡ€ΠΎΠ², ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π΄ΠΎ 97,9, 96,8 ΠΈ 100% соотвСтствСнно. ОсобоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ Π² диагностикС Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Π° Π²Π΅Π½ Ρ‚Π°Π·Π° ΠΈ Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΏΠΎΠ»ΠΎΠΉ Π²Π΅Π½Ρ‹, Π³Π΄Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π£Π—Π”Π‘ оказываСтся Π½ΠΈΠΆΠ΅. Π’Ρ‚ΠΎΡ€Ρ‹ΠΌ клиничСским Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ сСгодня, являСтся ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ использованиС КВ-Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΈ КВ-Π°Π½Π³ΠΈΠΎΠΏΡƒΠ»ΡŒΠΌΠΎΠ½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π² диагностикС ΡΠΌΠ΅Ρ€Ρ‚Π΅Π»ΡŒΠ½ΠΎ опасного ослоТнСния тромбоэмболии Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ этих ΠΏΠΎΠΏΡ‹Ρ‚ΠΎΠΊ ΠΏΡ€ΠΎΠ΄ΠΈΠΊΡ‚ΠΎΠ²Π°Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ прСимущСствами: ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ исслСдования ΠΈ отсутствиСм нСобходимости использования Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ввСдСния контрастного ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ выполнСния сканирования, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ состоянии пСрифСричСской Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ тромбоэмболии.Π•Ρ‰Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡ‹ΠΌ инструмСнтом контрастно-усилСнная КВ-вСнография ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ особСнностСй топографоанатомичСского строСния Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ русла. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ собствСнных исслСдований Π°Π²Ρ‚ΠΎΡ€Ρ‹ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ возмоТности прямой КВ-Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π² Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ систСмы Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй.ΠΠ΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠΉ топичСской диагностики с 3D-Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ систСмы Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй ΠΈ Ρ‚Π°Π·Π° посрСдством КВ-Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ обусловлСна Π½Π°Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΌ интСрСсом Π² послСдниС Π³ΠΎΠ΄Ρ‹ сосудистых ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΎΠ² ΠΊ Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠΈ ΠΈ Π±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΡŽ Π²ΠΎ Ρ„Π»Π΅Π±ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ ΡΠ½Π΄ΠΎΠ²Π°Π·Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°

    МРВ- И КВ-вСнография Π² диагностикС гСмодинамичСских Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСскими заболСваниями Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй Π§Π°ΡΡ‚ΡŒ II. ВозмоТности МРВ-исслСлований Π² диагностикС Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Π° Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… Π²Π΅Π½

    Get PDF
    In this literature review, the analysis of the studies of venous blood flow pathology in the inferior Vena cava system using magnetic resonance imaging (MRI) is carried out. Special attention is paid to the attempts made to use this method in the diagnosis of chronic lower limb vein disorders (CVD) through magnetic resonance venography (MRV). Historically and methodically, the gradual introduction of MRV methods in the diagnosis of lower limb vein thrombosis (LEDVT) and venous thromboembolism (VTE) has been shown.Methods of non-contrast MRV based on the effect of blood flow, as in the case of MR-Angiography, are divided into two principal groups: methods based on the amplitude effects of Time-of-Flight (TOF) and methods based on Phase Contrast effects (PC). Techniques for conducting contrast-free MRV are described in detail. Attention is paid to pulse sequences used in the world for visualization of veins in contrast-free MRV in TOF and PC mode (FR-FBI, SPADE, SSFP) and post-processing methods: 2D-TOF MRV FLASH, 2D-TOF MRV CRASS, FIPS, VED, VENS.Contrast-enhanced MRV (CE MRV) is based on the use of β€œblood pool” contrast agents, which feature the ability to form stable compounds with blood plasma proteins. Worldwidesubstances with magnetic and supermagnetic properties based on gadolinium or iron oxide are used as contrast agents for CE MRV. The result of using these contrast agents is an increase in the quality of visualization due to a better signal to noise ratio (SNR) using 3D image processing (3D CE MRV) using fast sequences: GRE, TFLAS, VESPA, CAT, in conditions of direct and indirect CE MRV.It is noted that in recent years, certain restrictions have been imposed on certain linear contrast agents containing gadolinium in their further use. Therefore, for the purpose of CE MRV, it is efficientl to use only cyclic contrast agents to avoid unnecessary risks.Contrast-free MRV has again received intensive development in recent years, due to the restrictions imposed, one of these methods is direct thrombus imaging (Direct Thrombus Imaging – DTI or Magnetic Resonance Direct Thrombus Imaging - MRDTI) using fast pulse sequences: bSSFP, BBTI, DANTE. The latest research on this LEDVT diagnostic method was published in 2019 and has shown high diagnostic value.For all the most commonly used methods of MRV, specificity and sensitivity are shown.Further MRV in patients with CVD and DVT is a promising diagnostic task in modern phlebology. MRV should be introduced into clinical practice more actively than it is today.Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΎΠ±Π·ΠΎΡ€Π΅ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ проводится Π°Π½Π°Π»ΠΈΠ· исслСдований ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° Π² систСмС Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΏΠΎΠ»ΠΎΠΉ Π²Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Magnetic Resonance Imaging – MRI). ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся прСдпринятым ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ°ΠΌ использования этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π² диагностикС хроничСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй (Chronic Venous Disorders – CVD) посрСдством провСдСния ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Π²Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (MRV). Π˜ΡΡ‚ΠΎΡ€ΠΈΡ‡Π΅ΡΠΊΠΈ ΠΈ мСтодичСски ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ поэтапноС Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² MRV Π² диагностику Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ·Π° Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй (LEDVT) ΠΈ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ тромбоэмболизма (VTE).ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ бСсконтрастной MRV, основанныС Π½Π° эффСктС ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΊΡ€ΠΎΠ²ΠΈ, ΠΊΠ°ΠΊ ΠΈ Π² случаС примСнСния MR-Angiography, ΠΏΠΎΠ΄Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π½Π° Π΄Π²Π΅ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½Ρ‹Ρ… эффСктах врСмя-ΠΏΡ€ΠΎΠ»Π΅Ρ‚Π° (Time-of-Flight – TOF), ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° Ρ„Π°Π·ΠΎΠ²Ρ‹Ρ… эффСктах (Phase Contrast – PC). Π’Π΅Ρ…Π½ΠΈΠΊΠΈ провСдСния бСсконтрастной MRV ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ описаны. Π£Π΄Π΅Π»Π΅Π½ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΠΌ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌ Π² ΠΌΠΈΡ€Π΅ для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π²Π΅Π½ ΠΏΡ€ΠΈ бСсконтрастной MRV Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ TOF ΠΈ Π Π‘ (FR-FBI, SPADE, SSFP), ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ постобработки изобраТСния: 2D-TOF MRV FLASH, 2D-TOF MRV CRASS, FIPS, VED, VENS.Π’ основС выполнСния контрастно-усилСнной MRV (Contrast-Enhanced MRV – CE MRV) Π»Π΅ΠΆΠΈΡ‚ использованиС контрастных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² β€œΠΏΡƒΠ»Π° крови”, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ устойчивыС соСдинСния с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ ΠΏΠ»Π°Π·Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ. Π’ ΠΌΠΈΡ€Π΅ Π² качСствС контрастных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² для CE MRV ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ вСщСства, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌΠΈ ΠΈ супСрмагнитными свойствами Π½Π° основС гадолиния ΠΈΠ»ΠΈ оксида ΠΆΠ΅Π»Π΅Π·Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ использования Π΄Π°Π½Π½Ρ‹Ρ… контрастных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² являСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π·Π° счСт Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ (Signal to Noise Ratio – SNR) с использованиСм ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ изобраТСния Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ 3D (3D-CE MRV) с использованиСм быстрых ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ: GRE, TFLAS, VESPA, CAT Π² условиях провСдСния прямой ΠΈ нСпрямой Π‘E MRV.ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² послСднСС врСмя Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… контрастных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², содСрТащих Π³Π°Π΄ΠΎΠ»ΠΈΠ½ΠΈΠΉ, Π² ΠΈΡ… дальнСйшСм использовании прСдприняты ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ограничСния. Π’ связи с этим с Ρ†Π΅Π»ΡŒΡŽ провСдСния Π‘E MRV Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ цикличСскиС контрастныС вСщСства, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π΅ΠΎΠΏΡ€Π°Π²Π΄Π°Π½Π½Ρ‹Ρ… рисков.БСсконтрастная MRV вновь ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° интСнсивноС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π² послСдниС Π³ΠΎΠ΄Ρ‹ Π² связи с Π²Π²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ ограничСниями. Одним ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² стал прямая визуализация Ρ‚Ρ€ΠΎΠΌΠ±Π° (Direct Thrombus Imaging – DTI ΠΈΠ»ΠΈ Magnetic Resonance Direct Thrombus Imaging – MRDTI) с использованиС быстрых ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ: bSSFP, BBTI, DANTE. ПослСдниС исслСдования Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° диагностики LEDVT Π±Ρ‹Π»ΠΈ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ‹ Π² 2019 Π³. ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π΄ΠΈΠ°Π³Π½ΠΎΡΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ.Π’ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ всСх Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² провСдСния MRV ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ.Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ MRV Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с CVD ΠΈ DVT являСтся пСрспСктивной диагностичСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ Π² соврСмСнной Ρ„Π»Π΅Π±ΠΎΠ»ΠΎΠ³ΠΈΠΈ. MRV Π΄ΠΎΠ»ΠΆΠ½Π° Π²Π½Π΅Π΄Ρ€ΡΡ‚ΡŒΡΡ Π² ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒ Π±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ, Ρ‡Π΅ΠΌ это происходит сСгодня

    Molecular-statistical approach to a behavior of ferroelectric, antiferroelectric and ferrielectric smectic phases in the electric field

    No full text
    The fundamental theoretical approach derived in A.V. Emelyanenko et al., Phys. Rev. E 74, 011705 (2006) is complemented by a consideration of the influence of the homogeneous electric field on Sm- C A * , biaxial intermediate phases, and Sm-C * . The crucial role of the induced polarization is investigated for the first time. The evolution of any tilted smectic phase in the electric field is found to meet the two thresholds. The first threshold corresponds to the unwinding process, and the second one corresponds to the phase transition into the bi-domain structure of Sm-C * , where the tilt plane has some contribution either along or against the electric field, while the average direction may still be perpendicular to the electric field. The tilt plane in the monodomain (conventional) structure preceding the second threshold is the same in every unwound phase, and is perpendicular to the electric field. No 3D distortion in Sm- C A * is predicted on application of the electric field. The entire electric-field-temperature phase diagrams including the possibility of existence of the maximal number of tilted smectic phases are plotted and compared with the experimental ones. The numerical calculations in the framework of this fundamental study are done with help of AFLC Phase Diagram Plotter software developed by the author and available at his web page

    Molecular theory of helical sense inversions in chiral nematic liquid crystals

    No full text
    A molecular theory of the helical twisting in chiral liquid crystals is developed, which provides an explanation for the experimentally observed helical sense inversion induced by a change of concentration in binary mixtures of chiral and nonchiral nematic liquid crystals. The theory also describes the sense inversion induced by a change of temperature observed in some single component nematics. The theory present is based on a simple model of a chiral rigid molecule, composed of several equivalent nonchiral sites, which are arranged in the molecule to form a chiral configuration. The macroscopic helical pitch in the chiral nematic phase, twist elastic constant, and nematic order parameters are calculated using the same molecular model. It is shown that the helical sense inversion can be determined by a large biaxiality of chiral molecules, it is also demonstrated that the biaxiality is important in determining the variation of the helical pitch with temperature and concentration
    • …
    corecore